Title: | Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models |
---|---|
Description: | A graphical user interface for interactive Markov chain Monte Carlo (MCMC) diagnostics and plots and tables helpful for analyzing a posterior sample. The interface is powered by the 'Shiny' web application framework from 'RStudio' and works with the output of MCMC programs written in any programming language (and has extended functionality for 'Stan' models fit using the 'rstan' and 'rstanarm' packages). |
Authors: | Jonah Gabry [aut, cre], Duco Veen [aut], Stan Development Team [ctb], Michael Andreae [ctb], Michael Betancourt [ctb], Bob Carpenter [ctb], Yuanjun Gao [ctb], Andrew Gelman [ctb], Ben Goodrich [ctb], Daniel Lee [ctb], Dongying Song [ctb], Rob Trangucci [ctb] |
Maintainer: | Jonah Gabry <[email protected]> |
License: | GPL (>=3) |
Version: | 2.6.0 |
Built: | 2025-01-15 04:11:46 UTC |
Source: | https://github.com/stan-dev/shinystan |
Stan Development Team
Applied Bayesian data analysis is primarily implemented through the Markov chain Monte Carlo (MCMC) algorithms offered by various software packages. When analyzing a posterior sample obtained by one of these algorithms the first step is to check for signs that the chains have converged to the target distribution and and also for signs that the algorithm might require tuning or might be ill-suited for the given model. There may also be theoretical problems or practical inefficiencies with the specification of the model. The ShinyStan app provides interactive plots and tables helpful for analyzing a posterior sample, with particular attention to identifying potential problems with the performance of the MCMC algorithm or the specification of the model. ShinyStan is powered by the Shiny web application framework by RStudio (https://shiny.rstudio.com/) and works with the output of MCMC programs written in any programming language (and has extended functionality for models fit using the rstan package and the No-U-Turn sampler).
Stan (https://mc-stan.org/) models can be run in R using the rstan package. Other packages like rstanarm and brms provide higher-level interfaces to Stan that use rstan internally.
The shinystan package allows you to store the basic components of an
entire project (code, posterior samples, graphs, tables, notes) in a single
object, a shinystan object
(sso, for short).
Users can save many of the plots as ggplot2 objects for further
customization and easy integration in reports or post-processing for
publication.
The deploy_shinystan
function lets you easily deploy your own
ShinyStan apps online for any of your models using the shinyapps.io
service from 'RStudio'. Each of your apps (each of your models) will have a
unique url and will be compatible with most web browsers.
The shinystan package is open source licensed under the GNU Public License, version 3 (GPLv3).
Check out the demo using launch_shinystan_demo
or try it with
one of your own models using launch_shinystan
.
Web page with online documentation (https://mc-stan.org/shinystan/)
Stan Forums on Discourse (https://discourse.mc-stan.org)
GitHub issue tracker (https://github.com/stan-dev/shinystan/issues)
Muth, C., Oravecz, Z., and Gabry, J. (2018) User-friendly Bayesian regression modeling: A tutorial with rstanarm and shinystan. The Quantitative Methods for Psychology. 14(2), 99–119. https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. *J. R. Stat. Soc. A*, 182: 389-402. doi:10.1111/rssa.12378 ([journal version](https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378), [preprint arXiv:1709.01449](https://arxiv.org/abs/1709.01449), [code on GitHub](https://github.com/jgabry/bayes-vis-paper))
as.shinystan
for creating shinystan
objects.
launch_shinystan_demo
to try a demo.
launch_shinystan
to launch the 'ShinyStan' interface
using a particular shinystan
object.
shinystan
objectsThe as.shinystan
function creates shinystan
objects that can be used with launch_shinystan
and various
other functions in the shinystan package. as.shinystan
is a
generic for which the shinystan package provides several methods.
Currently methods are provided for creating shinystan
objects from
arrays, lists of matrices, stanfit
objects (rstan),
stanreg
objects (rstanarm), and mcmc.list
objects
(coda).
is.shinystan
tests if an object is a shinystan
object.
as.shinystan(X, ...) is.shinystan(X) ## S4 method for signature 'array' as.shinystan( X, model_name = "unnamed model", warmup = 0, burnin = 0, param_dims = list(), model_code = NULL, note = NULL, sampler_params = NULL, algorithm = NULL, max_treedepth = NULL, ... ) ## S4 method for signature 'list' as.shinystan( X, model_name = "unnamed model", warmup = 0, burnin = 0, param_dims = list(), model_code = NULL, note = NULL, sampler_params = NULL, algorithm = NULL, max_treedepth = NULL, ... ) ## S4 method for signature 'mcmc.list' as.shinystan( X, model_name = "unnamed model", warmup = 0, burnin = 0, param_dims = list(), model_code = NULL, note = NULL, ... ) ## S4 method for signature 'stanfit' as.shinystan(X, pars, model_name = X@model_name, note = NULL, ...) ## S4 method for signature 'stanreg' as.shinystan(X, ppd = TRUE, seed = 1234, model_name = NULL, note = NULL, ...) ## S4 method for signature 'CmdStanMCMC' as.shinystan(X, pars = NULL, model_name = NULL, note = NULL, ...)
as.shinystan(X, ...) is.shinystan(X) ## S4 method for signature 'array' as.shinystan( X, model_name = "unnamed model", warmup = 0, burnin = 0, param_dims = list(), model_code = NULL, note = NULL, sampler_params = NULL, algorithm = NULL, max_treedepth = NULL, ... ) ## S4 method for signature 'list' as.shinystan( X, model_name = "unnamed model", warmup = 0, burnin = 0, param_dims = list(), model_code = NULL, note = NULL, sampler_params = NULL, algorithm = NULL, max_treedepth = NULL, ... ) ## S4 method for signature 'mcmc.list' as.shinystan( X, model_name = "unnamed model", warmup = 0, burnin = 0, param_dims = list(), model_code = NULL, note = NULL, ... ) ## S4 method for signature 'stanfit' as.shinystan(X, pars, model_name = X@model_name, note = NULL, ...) ## S4 method for signature 'stanreg' as.shinystan(X, ppd = TRUE, seed = 1234, model_name = NULL, note = NULL, ...) ## S4 method for signature 'CmdStanMCMC' as.shinystan(X, pars = NULL, model_name = NULL, note = NULL, ...)
X |
For |
... |
Arguments passed to the individual methods. |
model_name |
A string giving a name for the model. |
warmup |
The number of iterations to treat as warmup. Should be
|
burnin |
Deprecated. Use |
param_dims |
Rarely used and never necessary. A named list giving the
dimensions for all parameters. For scalar parameters use |
model_code |
Optionally, a character string with the code used to run
the model. This can also be added to your |
note |
Optionally, text to display on the Notepad page in the
'ShinyStan' GUI (stored in |
sampler_params , algorithm , max_treedepth
|
Rarely used and never
necessary. If using the |
pars |
For stanfit objects (rstan), an optional character vector
specifying which parameters should be included in the |
ppd |
For |
seed |
Passed to |
as.shinystan
returns a shinystan
object, which is an
instance of S4 class "shinystan"
.
is.shinystan
returns TRUE
if the tested object is a
shinystan
object and FALSE
otherwise.
as.shinystan,array-method
: Create a shinystan
object from a 3-D
array
of simulations. The array should have dimensions
corresponding to iterations, chains, and parameters, in that order.
as.shinystan,list-method
: Create a shinystan
object from a
list
of matrices. Each matrix
(or 2-D array)
should contain the simulations for an individual chain and all of the
matrices should have the same number of iterations (rows) and parameters
(columns). Parameters should have the same names and be in the same order.
as.shinystan,mcmc.list-method
: Create a shinystan
object from an
mcmc.list
object (coda).
as.shinystan,stanfit-method
: Create a shinystan
object from a
stanfit
object (rstan). Fewer optional arguments
are available for this method because all important information can be
taken automatically from the stanfit
object.
as.shinystan,stanreg-method
: Create a shinystan
object from a
stanreg
object (rstanarm).
as.shinystan,CmdStanMCMC-method
: Create a shinystan
object from a
CmdStanMCMC
object (cmdstanr).
launch_shinystan
to launch the 'ShinyStan' interface
using a particular shinystan
object.
drop_parameters
to remove parameters from a
shinystan
object.
generate_quantity
to add a new quantity to a
shinystan
object.
## Not run: sso <- as.shinystan(X, ...) # replace ... with optional arguments or omit it launch_shinystan(sso) ## End(Not run) ## Not run: ######################## ### list of matrices ### ######################## # Generate some fake data chain1 <- cbind(beta1 = rnorm(100), beta2 = rnorm(100), sigma = rexp(100)) chain2 <- cbind(beta1 = rnorm(100), beta2 = rnorm(100), sigma = rexp(100)) sso <- as.shinystan(list(chain1, chain2)) launch_shinystan(sso) # We can also specify some or all of the optional arguments # note: in order to use param_dims we need to rename 'beta1' and 'beta2' # to 'beta[1]' and 'beta[2]' colnames(chain1) <- colnames(chain2) <- c(paste0("beta[",1:2,"]"), "sigma") sso2 <- as.shinystan(list(chain1, chain2), model_name = "Example", warmup = 0, param_dims = list(beta = 2, sigma = 0)) launch_shinystan(sso2) ## End(Not run) ## Not run: ###################### ### stanfit object ### ###################### library("rstan") fit <- stan_demo("eight_schools") sso <- as.shinystan(fit, model_name = "example") ## End(Not run) ## Not run: ###################### ### stanreg object ### ###################### library("rstanarm") example("example_model") sso <- as.shinystan(example_model) launch_shinystan(sso) ## End(Not run)
## Not run: sso <- as.shinystan(X, ...) # replace ... with optional arguments or omit it launch_shinystan(sso) ## End(Not run) ## Not run: ######################## ### list of matrices ### ######################## # Generate some fake data chain1 <- cbind(beta1 = rnorm(100), beta2 = rnorm(100), sigma = rexp(100)) chain2 <- cbind(beta1 = rnorm(100), beta2 = rnorm(100), sigma = rexp(100)) sso <- as.shinystan(list(chain1, chain2)) launch_shinystan(sso) # We can also specify some or all of the optional arguments # note: in order to use param_dims we need to rename 'beta1' and 'beta2' # to 'beta[1]' and 'beta[2]' colnames(chain1) <- colnames(chain2) <- c(paste0("beta[",1:2,"]"), "sigma") sso2 <- as.shinystan(list(chain1, chain2), model_name = "Example", warmup = 0, param_dims = list(beta = 2, sigma = 0)) launch_shinystan(sso2) ## End(Not run) ## Not run: ###################### ### stanfit object ### ###################### library("rstan") fit <- stan_demo("eight_schools") sso <- as.shinystan(fit, model_name = "example") ## End(Not run) ## Not run: ###################### ### stanreg object ### ###################### library("rstanarm") example("example_model") sso <- as.shinystan(example_model) launch_shinystan(sso) ## End(Not run)
Requires a (free or paid) 'ShinyApps' account. Visit https://www.shinyapps.io/ to sign up.
deploy_shinystan(sso, appName, account = NULL, ..., deploy = TRUE)
deploy_shinystan(sso, appName, account = NULL, ..., deploy = TRUE)
sso |
|
appName |
The name to use for the application. Application names must be at least four characters long and may only contain letters, numbers, dashes and underscores. |
account |
shinyapps.io account username. Only required if more than one account is configured on the system. |
... |
Optional arguments. See Details. |
deploy |
Should the app be deployed? The only reason for this to be
|
In ...
, the arguments ppcheck_data
and
ppcheck_yrep
can be specified. ppcheck_data
should be a
vector of observations to use for graphical posterior predictive checking
and ppcheck_yrep
should be a character string naming the parameter
in sso
containing the posterior predictive simulations/replications.
The value of ppcheck_yrep
is only used to preselect the appropriate
parameter/generated quantity to use for the posterior predictive checking.
ppcheck_yrep
(but not ppcheck_data
) can also be set
interactively on shinyapps.io when using the app.
Invisibly, TRUE
if deployment succeeded
(did not encounter an error) or, if deploy
argument is set to
FALSE
, the path to the temporary directory containing the app ready
for deployment (also invisibly).
The example in the Deploying to shinyapps.io vignette that comes with this package.
https://www.shinyapps.io/ to sign up for a free or paid 'ShinyApps' account and for details on how to configure your account on your local system using the rsconnect package from 'RStudio'.
## Not run: # For this example assume sso is the name of the \code{shinystan} object for # the model you want to use. Assume also that you want to name your app # 'my-model' and that your shinyapps.io username is 'username'. deploy_shinystan(sso, appName = "my-model", account = "username") # If you only have one ShinyApps account configured then you can also omit # the 'account' argument. deploy_shinystan(sso, appName = "my-model") ## End(Not run)
## Not run: # For this example assume sso is the name of the \code{shinystan} object for # the model you want to use. Assume also that you want to name your app # 'my-model' and that your shinyapps.io username is 'username'. deploy_shinystan(sso, appName = "my-model", account = "username") # If you only have one ShinyApps account configured then you can also omit # the 'account' argument. deploy_shinystan(sso, appName = "my-model") ## End(Not run)
shinystan
objectRemove selected parameters from a shinystan
object. This is useful if
you have a very large shinystan
object when you only want to look at a
subset of parameters. With a smaller shinystan
object,
launch_shinystan
will be faster and you should experience
better performance (responsiveness) after launching when using the
'ShinyStan' app.
drop_parameters(sso, pars)
drop_parameters(sso, pars)
sso |
|
pars |
A character vector of parameter names. If the name of a
non-scalar (e.g. vector, matrix) parameter is included in |
sso
, with pars
dropped.
generate_quantity
to add a new quantity to a
shinystan
object.
# Using example shinystan object 'eight_schools' print(eight_schools@param_names) # Remove the scalar parameters mu and tau sso <- drop_parameters(eight_schools, pars = c("mu", "tau")) print(sso@param_names) # Remove all elements of the parameter vector theta sso <- drop_parameters(sso, pars = "theta") print(sso@param_names)
# Using example shinystan object 'eight_schools' print(eight_schools@param_names) # Remove the scalar parameters mu and tau sso <- drop_parameters(eight_schools, pars = c("mu", "tau")) print(sso@param_names) # Remove all elements of the parameter vector theta sso <- drop_parameters(sso, pars = "theta") print(sso@param_names)
Add to shinystan object a new parameter as a function of one or two existing parameters.
generate_quantity(sso, param1, param2, fun, new_name)
generate_quantity(sso, param1, param2, fun, new_name)
sso |
|
param1 |
Name of first parameter as character string. |
param2 |
Optional. Name of second parameter as character string. |
fun |
Function to call, i.e. |
new_name |
Name for the new parameter as character string. |
sso, updated. See Examples.
drop_parameters
to remove parameters from a
shinystan
object.
# Using example shinystan object 'eight_schools' sso <- eight_schools sso <- generate_quantity(sso, fun = function(x) x^2, param1 = "tau", new_name = "tau_sq") sso <- generate_quantity(sso, fun = "-", param1 = "theta[1]", param2 = "theta[2]", new_name = "theta1minus2")
# Using example shinystan object 'eight_schools' sso <- eight_schools sso <- generate_quantity(sso, fun = function(x) x^2, param1 = "tau", new_name = "tau_sq") sso <- generate_quantity(sso, fun = "-", param1 = "theta[1]", param2 = "theta[2]", new_name = "theta1minus2")
Launch the 'ShinyStan' app in the default web browser. 'RStudio' users also have the option of launching the app in the pop-up Viewer.
launch_shinystan(object, ...) ## Default S3 method: launch_shinystan(object, ..., rstudio = getOption("shinystan.rstudio")) ## S3 method for class 'shinystan' launch_shinystan(object, ..., rstudio = getOption("shinystan.rstudio"))
launch_shinystan(object, ...) ## Default S3 method: launch_shinystan(object, ..., rstudio = getOption("shinystan.rstudio")) ## S3 method for class 'shinystan' launch_shinystan(object, ..., rstudio = getOption("shinystan.rstudio"))
object |
The object to use. For the default method this can be an object
of class |
... |
Optional arguments passed to |
rstudio |
Only relevant for 'RStudio' users. The default ( |
The launch_shinystan
function is used for the side effect of
starting the 'ShinyStan' app, but it also returns a shinystan
object, an instance of S4 class "shinystan"
.
Muth, C., Oravecz, Z., and Gabry, J. (2018) User-friendly Bayesian regression modeling: A tutorial with rstanarm and shinystan. The Quantitative Methods for Psychology. 14(2), 99–119. https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf
Gabry, J. , Simpson, D. , Vehtari, A. , Betancourt, M. and Gelman, A. (2019), Visualization in Bayesian workflow. *J. R. Stat. Soc. A*, 182: 389-402. doi:10.1111/rssa.12378 ([journal version](https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssa.12378), [preprint arXiv:1709.01449](https://arxiv.org/abs/1709.01449), [code on GitHub](https://github.com/jgabry/bayes-vis-paper))
as.shinystan
for creating shinystan
objects.
update_sso
to update a shinystan
object created
by a previous version of the package.
launch_shinystan_demo
to try a demo.
## Not run: ####################################### # Example 1: 'sso' is a shinystan object ####################################### # Just launch shinystan launch_shinystan(sso) # Launch shinystan and replace sso with an updated version of itself # if any changes are made to sso while using the app sso <- launch_shinystan(sso) # Launch shinystan but save any changes made to sso while running the app # in a new shinystan object sso2. sso will remained unchanged. sso2 <- launch_shinystan(sso) ####################################### # Example 2: 'sf' is a stanfit object ####################################### # Just launch shinystan launch_shinystan(sf) # Launch shinystan and save the resulting shinystan object sf_sso <- launch_shinystan(sf) # Now sf_sso is a shinystan object and so Example 1 (above) applies when # using sf_sso. ####################################### # Example 3: 'fit' is an mcmc.list, array or list of matrices ####################################### # First create shinystan object (see ?as.shinystan) for full details) ## End(Not run)
## Not run: ####################################### # Example 1: 'sso' is a shinystan object ####################################### # Just launch shinystan launch_shinystan(sso) # Launch shinystan and replace sso with an updated version of itself # if any changes are made to sso while using the app sso <- launch_shinystan(sso) # Launch shinystan but save any changes made to sso while running the app # in a new shinystan object sso2. sso will remained unchanged. sso2 <- launch_shinystan(sso) ####################################### # Example 2: 'sf' is a stanfit object ####################################### # Just launch shinystan launch_shinystan(sf) # Launch shinystan and save the resulting shinystan object sf_sso <- launch_shinystan(sf) # Now sf_sso is a shinystan object and so Example 1 (above) applies when # using sf_sso. ####################################### # Example 3: 'fit' is an mcmc.list, array or list of matrices ####################################### # First create shinystan object (see ?as.shinystan) for full details) ## End(Not run)
'ShinyStan' demo
launch_shinystan_demo( demo_name = "eight_schools", rstudio = getOption("shinystan.rstudio"), ... )
launch_shinystan_demo( demo_name = "eight_schools", rstudio = getOption("shinystan.rstudio"), ... )
demo_name |
The name of the demo. Currently
|
rstudio |
Only relevant for 'RStudio' users. The default ( |
... |
Optional arguments passed to |
An S4 shinystan object.
launch_shinystan
to launch the 'ShinyStan' interface
using a particular shinystan
object.
as.shinystan
for creating shinystan
objects.
## Not run: # launch demo but don't save a shinystan object launch_shinystan_demo() # launch demo and save the shinystan object for the demo sso_demo <- launch_shinystan_demo() ## End(Not run)
## Not run: # launch demo but don't save a shinystan object launch_shinystan_demo() # launch demo and save the shinystan object for the demo sso_demo <- launch_shinystan_demo() ## End(Not run)
From a shinystan object get rhat, effective sample size, posterior quantiles, means, standard deviations, sampler diagnostics, etc.
retrieve(sso, what, ...)
retrieve(sso, what, ...)
sso |
|
what |
What do you want to get? See Details, below. |
... |
Optional arguments, in particular |
The argument what
can take on the values below. 'Args:
arg
' means that arg
can be specified in ...
for this
value of what
.
"rhat"
, "Rhat"
, "r_hat"
, or "R_hat"
returns: Rhat statistics. Args: pars
"N_eff"
, "n_eff"
, "neff"
, "Neff"
, "ess"
, or "ESS"
returns: Effective sample sizes. Args: pars
"mean"
returns: Posterior means. Args: pars
"sd"
returns: Posterior standard deviations. Args: pars
"se_mean"
or "mcse"
returns: Monte Carlo standard error. Args: pars
"median"
returns: Posterior medians. Args: pars
.
"quantiles"
or any string with "quant"
in it (not case sensitive)returns: 2.5%, 25%, 50%, 75%, 97.5% posterior quantiles. Args: pars
.
"avg_accept_stat"
or any string with "accept"
in it (not case sensitive)returns: Average value of "accept_stat" (which itself is the average acceptance probability over the NUTS subtree). Args: inc_warmup
"prop_divergent"
or any string with "diverg"
in it (not case sensitive)returns: Proportion of divergent iterations for each chain. Args: inc_warmup
"max_treedepth"
or any string with "tree"
or "depth"
in it (not case sensitive)returns: Maximum treedepth for each chain. Args: inc_warmup
"avg_stepsize"
or any string with "step"
in it (not case sensitive)returns: Average stepsize for each chain. Args: inc_warmup
Sampler diagnostics (e.g. "avg_accept_stat"
) only available for
models originally fit using Stan.
# Using example shinystan object 'eight_schools' sso <- eight_schools retrieve(sso, "rhat") retrieve(sso, "mean", pars = c('theta[1]', 'mu')) retrieve(sso, "quantiles") retrieve(sso, "max_treedepth") # equivalent to retrieve(sso, "depth"), retrieve(sso, "tree"), etc. retrieve(sso, "prop_divergent") retrieve(sso, "prop_divergent", inc_warmup = TRUE)
# Using example shinystan object 'eight_schools' sso <- eight_schools retrieve(sso, "rhat") retrieve(sso, "mean", pars = c('theta[1]', 'mu')) retrieve(sso, "quantiles") retrieve(sso, "max_treedepth") # equivalent to retrieve(sso, "depth"), retrieve(sso, "tree"), etc. retrieve(sso, "prop_divergent") retrieve(sso, "prop_divergent", inc_warmup = TRUE)
shinystan
objectsSee as.shinystan
for documentation on creating
shinystan
objects and eight_schools
for an example
object.
model_name
("character"
) Model name.
param_names
("character"
) Parameter names.
param_dims
("list"
) Parameter dimensions.
posterior_sample
("array"
) MCMC sample.
summary
("matrix"
) Summary stats for posterior_sample
.
sampler_params
("list"
) Sampler parameters (for certain Stan
models only).
n_chain
("integer"
) Number of chains.
n_iter
("integer"
) Number of iterations per chain.
n_warmup
("integer"
) Number of warmup iterations per chain.
user_model_info
("character"
) Notes to display on the
Notepad page in the 'ShinyStan' GUI.
model_code
("character"
) Model code to display on the
Model Code page in the 'ShinyStan' GUI.
misc
("list"
) Miscellaneous, for internal use.
Muth, C., Oravecz, Z., and Gabry, J. (2018) User-friendly Bayesian regression modeling: A tutorial with rstanarm and shinystan. The Quantitative Methods for Psychology. 14(2), 99–119. https://www.tqmp.org/RegularArticles/vol14-2/p099/p099.pdf
as.shinystan
for creating shinystan
objects.
drop_parameters
to remove parameters from a
shinystan
object.
generate_quantity
to add a new quantity to a
shinystan
object.
shinystan-metadata
to view or change metadata
associated with a shinystan
object.
shinystan
objectView or change metadata associated with a shinystan
object
sso_info(sso) model_code(sso, code = NULL) notes(sso, note = NULL, replace = FALSE) model_name(sso, name = NULL)
sso_info(sso) model_code(sso, code = NULL) notes(sso, note = NULL, replace = FALSE) model_name(sso, name = NULL)
sso |
|
code |
A string, containing model code to be added, that can be
used as an argument to |
note |
A string containing a note to add to any existing notes
or replace existing notes, depending on the value of |
replace |
If |
name |
A string giving the new model name to use. |
sso_info
prints basic metadata including number of parameters,
chains, iterations, warmup iterations, etc. It does not return anything.
model_code
returns or replaces model code stored in a
shinystan
object. If code
is NULL
then any existing
model code stored in sso
is returned as a character string. If
code
is specified then an updated shinystan
object is
returned with code
added. For shinystan
objects created from
stanfit (rstan) and stanreg (rstanarm) objects, model code is
automatically taken from that object and does not need to be added
manually. From within the 'ShinyStan' interface model code can be viewed on
the Model Code page.
notes
returns, amends, or replaces notes stored in a
shinystan
object. If note
is NULL
then any existing
notes stored in sso
are returned as a character string. If
note
is specified then an updated shinystan
object is
returned with either note
added to the previous notes (if
replace=FALSE
) or overwritten by note
(if replace =
TRUE
). From within the 'ShinyStan' interface, notes are viewable on the
Notepad page.
model_name
returns or replaces the model name associated with
a shinystan
object. If name
is NULL
then the current
model name is returned. If name
is specified then sso
is
returned with an updated model name.
as.shinystan
for creating shinystan
objects.
drop_parameters
to remove parameters from a
shinystan
object.
generate_quantity
to add a new quantity to a
shinystan
object.
# use eight_schools example object sso <- eight_schools ################ ### sso_info ### ################ sso_info(sso) ################## ### model_code ### ################## # view model code in example shinystan object 'eight_schools' cat(model_code(sso)) # change the model code in sso # some jags style code my_code <- " model { for (i in 1:length(Y)) { Y[i] ~ dpois(lambda[i]) log(lambda[i]) <- inprod(X[i,], theta[]) } for (j in 1:J) { theta[j] ~ dt(0.0, 1.0, 1.0) } } " sso <- model_code(sso, my_code) cat(model_code(sso)) ############# ### notes ### ############# # view existing notes notes(sso) # add a note to the existing notes sso <- notes(sso, "New note") notes(sso) cat(notes(sso)) # replace existing notes sso <- notes(sso, "replacement note", replace = TRUE) notes(sso) ################## ### model_name ### ################## # view model name model_name(sso) # change model name sso <- model_name(sso, "some other name") identical(model_name(sso), "some other name")
# use eight_schools example object sso <- eight_schools ################ ### sso_info ### ################ sso_info(sso) ################## ### model_code ### ################## # view model code in example shinystan object 'eight_schools' cat(model_code(sso)) # change the model code in sso # some jags style code my_code <- " model { for (i in 1:length(Y)) { Y[i] ~ dpois(lambda[i]) log(lambda[i]) <- inprod(X[i,], theta[]) } for (j in 1:J) { theta[j] ~ dt(0.0, 1.0, 1.0) } } " sso <- model_code(sso, my_code) cat(model_code(sso)) ############# ### notes ### ############# # view existing notes notes(sso) # add a note to the existing notes sso <- notes(sso, "New note") notes(sso) cat(notes(sso)) # replace existing notes sso <- notes(sso, "replacement note", replace = TRUE) notes(sso) ################## ### model_name ### ################## # view model name model_name(sso) # change model name sso <- model_name(sso, "some other name") identical(model_name(sso), "some other name")
If you encounter any errors when using a shinystan object (sso
)
created by a previous version of shinystan, you might need to run
update_sso
. If update_sso
does not resolve the problem and
you still have the object (e.g. stanfit, stanreg, mcmc.list) from which
sso
was originally created, you can create a new shinystan object
using as.shinystan
.
update_sso(sso)
update_sso(sso)
sso |
If sso
is already compatible with your version of
shinystan then sso
itself is returned and a message is printed
indicating that sso
is already up-to-date. Otherwise an updated
version of sso
is returned unless an error is encountered.
as.shinystan
for creating shinystan
objects.
## Not run: sso_new <- update_sso(sso) ## End(Not run)
## Not run: sso_new <- update_sso(sso) ## End(Not run)