--- title: "Accessing the contents of a stanfit object" author: "Stan Development Team" date: "`r Sys.Date()`" output: rmarkdown::html_vignette: toc: true vignette: > %\VignetteIndexEntry{stanfit objects} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} library(rstan) knitr::opts_chunk$set( echo = TRUE, error = TRUE, comment = NA, fig.align = "center", fig.height = 5, fig.width = 7 ) ``` This vignette demonstrates how to access most of data stored in a stanfit object. A stanfit object (an object of class `"stanfit"`) contains the output derived from fitting a Stan model using Markov chain Monte Carlo or one of Stan's variational approximations (meanfield or full-rank). Throughout the document we'll use the stanfit object obtained from fitting the Eight Schools example model: ```{r, example-model, eval=FALSE} library(rstan) fit <- stan_demo("eight_schools", refresh = 0) ``` ```{r, fit, echo=FALSE, cache=FALSE, results="hide"} J <- 8 y <- c(28, 8, -3, 7, -1, 1, 18, 12) sigma <- c(15, 10, 16, 11, 9, 11, 10, 18) fit <- stan( file= "schools.stan", model_name = "eight_schools", data = c("y", "J", "sigma"), refresh = 0 ) ``` ```{r, stanfit-class} class(fit) ``` ## Posterior draws There are several functions that can be used to access the draws from the posterior distribution stored in a stanfit object. These are `extract`, `as.matrix`, `as.data.frame`, and `as.array`, each of which returns the draws in a different format.
#### extract() The `extract` function (with its default arguments) returns a list with named components corresponding to the model parameters. ```{r, extract-1} list_of_draws <- extract(fit) print(names(list_of_draws)) ``` In this model the parameters `mu` and `tau` are scalars and `theta` is a vector with eight elements. This means that the draws for `mu` and `tau` will be vectors (with length equal to the number of post-warmup iterations times the number of chains) and the draws for `theta` will be a matrix, with each column corresponding to one of the eight components: ```{r, extract-2} head(list_of_draws$mu) head(list_of_draws$tau) head(list_of_draws$theta) ```
#### as.matrix(), as.data.frame(), as.array() The `as.matrix`, `as.data.frame`, and `as.array` functions can also be used to retrieve the posterior draws from a stanfit object: ```{r, as.matrix-1} matrix_of_draws <- as.matrix(fit) print(colnames(matrix_of_draws)) df_of_draws <- as.data.frame(fit) print(colnames(df_of_draws)) array_of_draws <- as.array(fit) print(dimnames(array_of_draws)) ``` The `as.matrix` and `as.data.frame` methods essentially return the same thing except in matrix and data frame form, respectively. The `as.array` method returns the draws from each chain separately and so has an additional dimension: ```{r, as.matrix-2, results="hold"} print(dim(matrix_of_draws)) print(dim(df_of_draws)) print(dim(array_of_draws)) ``` By default all of the functions for retrieving the posterior draws return the draws for _all_ parameters (and generated quantities). The optional argument `pars` (a character vector) can be used if only a subset of the parameters is desired, for example: ```{r, as.matrix-3} mu_and_theta1 <- as.matrix(fit, pars = c("mu", "theta[1]")) head(mu_and_theta1) ```
## Posterior summary statistics and convergence diagnostics Summary statistics are obtained using the `summary` function. The object returned is a list with two components: ```{r, summary-1} fit_summary <- summary(fit) print(names(fit_summary)) ``` In `fit_summary$summary` all chains are merged whereas `fit_summary$c_summary` contains summaries for each chain individually. Typically we want the summary for all chains merged, which is what we'll focus on here. The summary is a matrix with rows corresponding to parameters and columns to the various summary quantities. These include the posterior mean, the posterior standard deviation, and various quantiles computed from the draws. The `probs` argument can be used to specify which quantiles to compute and `pars` can be used to specify a subset of parameters to include in the summary. For models fit using MCMC, also included in the summary are the Monte Carlo standard error (`se_mean`), the effective sample size (`n_eff`), and the R-hat statistic (`Rhat`). ```{r, summary-2} print(fit_summary$summary) ``` If, for example, we wanted the only quantiles included to be 10% and 90%, and for only the parameters included to be `mu` and `tau`, we would specify that like this: ```{r, summary-3} mu_tau_summary <- summary(fit, pars = c("mu", "tau"), probs = c(0.1, 0.9))$summary print(mu_tau_summary) ``` Since `mu_tau_summary` is a matrix we can pull out columns using their names: ```{r, summary-4} mu_tau_80pct <- mu_tau_summary[, c("10%", "90%")] print(mu_tau_80pct) ```
## Sampler diagnostics For models fit using MCMC the stanfit object will also contain the values of parameters used for the sampler. The `get_sampler_params` function can be used to access this information. The object returned by `get_sampler_params` is a list with one component (a matrix) per chain. Each of the matrices has number of columns corresponding to the number of sampler parameters and the column names provide the parameter names. The optional argument inc_warmup (defaulting to `TRUE`) indicates whether to include the warmup period. ```{r, get_sampler_params-1} sampler_params <- get_sampler_params(fit, inc_warmup = FALSE) sampler_params_chain1 <- sampler_params[[1]] colnames(sampler_params_chain1) ``` To do things like calculate the average value of `accept_stat__` for each chain (or the maximum value of `treedepth__` for each chain if using the NUTS algorithm, etc.) the `sapply` function is useful as it will apply the same function to each component of `sampler_params`: ```{r, get_sampler_params-2} mean_accept_stat_by_chain <- sapply(sampler_params, function(x) mean(x[, "accept_stat__"])) print(mean_accept_stat_by_chain) max_treedepth_by_chain <- sapply(sampler_params, function(x) max(x[, "treedepth__"])) print(max_treedepth_by_chain) ```
## Model code The Stan program itself is also stored in the stanfit object and can be accessed using `get_stancode`: ```{r, get_stan_code-1} code <- get_stancode(fit) ``` The object `code` is a single string and is not very intelligible when printed: ```{r, get_stan_code-2} print(code) ``` A readable version can be printed using `cat`: ```{r, get_stan_code-3} cat(code) ```
## Initial values The `get_inits` function returns initial values as a list with one component per chain. Each component is itself a (named) list containing the initial values for each parameter for the corresponding chain: ```{r, get_inits} inits <- get_inits(fit) inits_chain1 <- inits[[1]] print(inits_chain1) ```
## (P)RNG seed The `get_seed` function returns the (P)RNG seed as an integer: ```{r, get_seed} print(get_seed(fit)) ```
## Warmup and sampling times The `get_elapsed_time` function returns a matrix with the warmup and sampling times for each chain: ```{r, get_elapsed_time} print(get_elapsed_time(fit)) ```