NOTE: We recommend viewing the fully rendered version of this vignette online at https://mc-stan.org/loo/articles/
This vignette demonstrates how to improve the Monte Carlo sampling
accuracy of leave-one-out cross-validation with the loo
package and Stan. The loo package automatically
monitors the sampling accuracy using Pareto k diagnostics for each observation.
Here, we present a method for quickly improving the accuracy when the
Pareto diagnostics indicate problems. This is done by performing some
additional computations using the existing posterior sample. If
successful, this will decrease the Pareto k values, making the model
assessment more reliable. loo also stores the original
Pareto k values with the name
influence_pareto_k
which are not changed. They can be used
as a diagnostic of how much each observation influences the posterior
distribution.
The methodology presented is based on the paper
More information about the Pareto k diagnostics is given in the following papers
Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. :10.1007/s11222-016-9696-4. Links: published | arXiv preprint.
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. Journal of Machine Learning Research, 25(72):1-58. PDF
We will use the same example as in the vignette Using the loo package (version >= 2.0.0). See the demo for a description of the problem and data. We will use the same Poisson regression model as in the case study.
Here is the Stan code for fitting the Poisson regression model, which we will use for modeling the number of roaches.
# Note: some syntax used in this Stan program requires RStan >= 2.26 (or CmdStanR)
# To use an older version of RStan change the line declaring `y` to: int y[N];
stancode <- "
data {
int<lower=1> K;
int<lower=1> N;
matrix[N,K] x;
array[N] int y;
vector[N] offset;
real beta_prior_scale;
real alpha_prior_scale;
}
parameters {
vector[K] beta;
real intercept;
}
model {
y ~ poisson(exp(x * beta + intercept + offset));
beta ~ normal(0,beta_prior_scale);
intercept ~ normal(0,alpha_prior_scale);
}
generated quantities {
vector[N] log_lik;
for (n in 1:N)
log_lik[n] = poisson_lpmf(y[n] | exp(x[n] * beta + intercept + offset[n]));
}
"
Following the usual approach recommended in Writing
Stan programs for use with the loo package, we compute the
log-likelihood for each observation in the
generated quantities
block of the Stan program.
In addition to loo, we load the rstan package for fitting the model, and the rstanarm package for the data.
Next we fit the model in Stan using the rstan package:
# Prepare data
data(roaches, package = "rstanarm")
roaches$roach1 <- sqrt(roaches$roach1)
y <- roaches$y
x <- roaches[,c("roach1", "treatment", "senior")]
offset <- log(roaches[,"exposure2"])
n <- dim(x)[1]
k <- dim(x)[2]
standata <- list(N = n, K = k, x = as.matrix(x), y = y, offset = offset, beta_prior_scale = 2.5, alpha_prior_scale = 5.0)
# Compile
stanmodel <- stan_model(model_code = stancode)
# Fit model
fit <- sampling(stanmodel, data = standata, seed = seed, refresh = 0)
print(fit, pars = "beta")
Let us now evaluate the predictive performance of the model using
loo()
.
The loo()
function output warnings that there are some
observations which are highly influential, and thus the accuracy of
importance sampling is compromised as indicated by the large Pareto
k diagnostic values (>
0.7). As discussed in the vignette Using the
loo package (version >= 2.0.0), this may be an indication of
model misspecification. Despite that, it is still beneficial to be able
to evaluate the predictive performance of the model accurately.
To improve the accuracy of the loo()
result above, we
could perform leave-one-out cross-validation by explicitly leaving out
single observations and refitting the model using MCMC repeatedly.
However, the Pareto k
diagnostics indicate that there are 19 observations which are
problematic. This would require 19 model refits which may require a lot
of computation time.
Instead of refitting with MCMC, we can perform a faster moment
matching correction to the importance sampling for the problematic
observations. This can be done with the loo_moment_match()
function in the loo package, which takes our existing
loo
object as input and modifies it. The moment matching
requires some evaluations of the model posterior density. For models
fitted with rstan, this can be conveniently done by
using the existing stanfit
object.
First, we show how the moment matching can be used for a model fitted
using rstan. It only requires setting the argument
moment_match
to TRUE
in the loo()
function. Optionally, you can also set the argument
k_threshold
which determines the Pareto k threshold, above which moment
matching is used. By default, it operates on all observations whose
Pareto k value is larger than
the sample size (S) specific
threshold min (1 − 1/log10(S), 0.7)
(which is 0.7 for S > 2200).
After the moment matching, all observations have the diagnostic
Pareto k less than 0.7,
meaning that the estimates are now reliable. The total
elpd_loo
estimate also changed from -5457.8
to
-5478.5
, showing that before moment matching,
loo()
overestimated the predictive performance of the
model.
The updated Pareto k values
stored in loo2$diagnostics$pareto_k
are considered
algorithmic diagnostic values that indicate the sampling accuracy. The
original Pareto k values are
stored in loo2$pointwise[,"influence_pareto_k"]
and these
are not modified by the moment matching. These can be considered as
diagnostics for how big influence each observation has on the posterior
distribution. In addition to the Pareto k diagnostics, moment matching also
updates the effective sample size estimates.
loo_moment_match()
directlyThe moment matching can also be performed by explicitly calling the
function loo_moment_match()
. This enables its use also for
models that are not using rstan or another package with
built-in support for loo_moment_match()
. To use
loo_moment_match()
, the user must give the model object
x
, the loo
object, and 5 helper functions as
arguments to loo_moment_match()
. The helper functions
are
post_draws
x
as the first argument and
returns a matrix of posterior draws of the model parameters,
pars
.log_lik_i
x
and i
and returns
a matrix (one column per chain) or a vector (all chains stacked) of
log-likeliood draws of the ith observation based on the model
x
. If the draws are obtained using MCMC, the matrix with
MCMC chains separated is preferred.unconstrain_pars
x
and
pars
, and returns posterior draws on the unconstrained
space based on the posterior draws on the constrained space passed via
pars
.log_prob_upars
x
and
upars
, and returns a matrix of log-posterior density values
of the unconstrained posterior draws passed via upars
.log_lik_i_upars
x
, upars
,
and i
and returns a vector of log-likelihood draws of the
i
th observation based on the unconstrained posterior draws
passed via upars
.Next, we show how the helper functions look like for RStan objects,
and show an example of using loo_moment_match()
directly.
For stanfit objects from rstan objects, the functions
look like this:
# create a named list of draws for use with rstan methods
.rstan_relist <- function(x, skeleton) {
out <- utils::relist(x, skeleton)
for (i in seq_along(skeleton)) {
dim(out[[i]]) <- dim(skeleton[[i]])
}
out
}
# rstan helper function to get dims of parameters right
.create_skeleton <- function(pars, dims) {
out <- lapply(seq_along(pars), function(i) {
len_dims <- length(dims[[i]])
if (len_dims < 1) return(0)
return(array(0, dim = dims[[i]]))
})
names(out) <- pars
out
}
# extract original posterior draws
post_draws_stanfit <- function(x, ...) {
as.matrix(x)
}
# compute a matrix of log-likelihood values for the ith observation
# matrix contains information about the number of MCMC chains
log_lik_i_stanfit <- function(x, i, parameter_name = "log_lik", ...) {
loo::extract_log_lik(x, parameter_name, merge_chains = FALSE)[, , i]
}
# transform parameters to the unconstraint space
unconstrain_pars_stanfit <- function(x, pars, ...) {
skeleton <- .create_skeleton(x@sim$pars_oi, x@par_dims[x@sim$pars_oi])
upars <- apply(pars, 1, FUN = function(theta) {
rstan::unconstrain_pars(x, .rstan_relist(theta, skeleton))
})
# for one parameter models
if (is.null(dim(upars))) {
dim(upars) <- c(1, length(upars))
}
t(upars)
}
# compute log_prob for each posterior draws on the unconstrained space
log_prob_upars_stanfit <- function(x, upars, ...) {
apply(upars, 1, rstan::log_prob, object = x,
adjust_transform = TRUE, gradient = FALSE)
}
# compute log_lik values based on the unconstrained parameters
log_lik_i_upars_stanfit <- function(x, upars, i, parameter_name = "log_lik",
...) {
S <- nrow(upars)
out <- numeric(S)
for (s in seq_len(S)) {
out[s] <- rstan::constrain_pars(x, upars = upars[s, ])[[parameter_name]][i]
}
out
}
Using these function, we can call loo_moment_match()
to
update the existing loo
object.
loo3 <- loo::loo_moment_match.default(
x = fit,
loo = loo1,
post_draws = post_draws_stanfit,
log_lik_i = log_lik_i_stanfit,
unconstrain_pars = unconstrain_pars_stanfit,
log_prob_upars = log_prob_upars_stanfit,
log_lik_i_upars = log_lik_i_upars_stanfit
)
loo3
As expected, the result is identical to the previous result of
loo2 <- loo(fit, moment_match = TRUE)
.
Gelman, A., and Hill, J. (2007). Data Analysis Using Regression and Multilevel Hierarchical Models. Cambridge University Press.
Stan Development Team (2020) RStan: the R interface to Stan, Version 2.21.1 https://mc-stan.org
Paananen, T., Piironen, J., Buerkner, P.-C., Vehtari, A. (2021). Implicitly adaptive importance sampling. Statistics and Computing, 31, 16. :10.1007/s11222-020-09982-2. arXiv preprint arXiv:1906.08850.
Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. :10.1007/s11222-016-9696-4. Links: published | arXiv preprint.
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. Journal of Machine Learning Research, 25(72):1-58. PDF