Package: cmdstanr (via r-universe)

August 5, 2024
Title R Interface to 'CmdStan'
Version 0.8.1
Date 2024-06-06

Description A lightweight interface to 'Stan' <https://mc-stan.org>.
The 'CmdStanR' interface is an alternative to 'RStan' that
calls the command line interface for compilation and running
algorithms instead of interfacing with C++ via 'Repp'. This has
many benefits including always being compatible with the latest
version of Stan, fewer installation errors, fewer unexpected
crashes in RStudio, and a more permissive license.

License BSD_3 clause + file LICENSE
URL https://mc-stan.org/cmdstanr/, https://discourse.mc-stan.org

BugReports https://github.com/stan-dev/cmdstanr/issues
Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE, r6 = FALSE)

SystemRequirements CmdStan
(https://mc-stan.org/users/interfaces/cmdstan)

Depends R (>=3.5.0)

Imports checkmate, data.table, jsonlite (>= 1.2.0), posterior (>=
1.4.1), processx (>= 3.5.0), R6 (>= 2.4.0), withr (>=2.5.0),
rlang (>=0.4.7)

Suggests bayesplot, ggplot2, knitr (>= 1.37), loo (>=2.0.0),
rmarkdown, testthat (>= 2.1.0), Rcpp

VignetteBuilder knitr

Repository https://stan-dev.r-universe.dev

RemoteUrl https://github.com/stan-dev/cmdstanr
RemoteRef v0.8.1

RemoteSha 02259ef7aa2a8blc8de2fa3fc42a9feafd789288

https://mc-stan.org
https://mc-stan.org/cmdstanr/
https://discourse.mc-stan.org
https://github.com/stan-dev/cmdstanr/issues

2 Contents

Contents
cmdstanr-package Lo 3
as_draws.CmdStanMCMC 7
as._ memC.iSt e 8
CmdStanDiagnose e 9
CmdStanGQ e e e 10
CmdStanLaplace e 12
CmdStanMCMC e e e e e e e 13
CmdStanMLE 15
CmdStanModel e 16
CmdStanPathfinder 20
cmdstanr_example L e 21
cmdstanr_global_options e 22
CmdStanVB e e e e 23
emdsStan_CoeICION v v v i e 25
cmdstan_model e 25
draws_to_CSV e e e 29
eng_cmdstan e 30
fit-method-cmdstan_summary Lo 31
fitmethod-code e 32
fit-method-constrain_variables 32
fit-method-diagnostic_summary 33
fit-method-draws 34
fitmethod-gradients 36
fit-method-grad_log_prob 37
fittmethod-hessian e 38
fitmethod-init e e e 39
fit-method-init_model_methods 40
fit-method-inv_metric e e e e 40
fit-method-log_prob 41
fit-method-loo 42
fitmethod-lp 43
fit-method-metadata 44
fitmethod-mle 45
fit-method-num_chains e 46
fitmethod-output L 47
fit-method-profiles 48
fit-method-return_codes e 49
fit-method-sampler_diagnostics 50
fit-method-save_object 51
fit-method-save_output_files 52
fitmethod-summary 54
fitmethod-time e e e 55
fit-method-unconstrain_draws 56
fit-method-unconstrain_variables 57
fit-method-variable_skeleton 58

install_cmdstan e 59

cmdstanr-package 3

model-method-check_syntax 61
model-method-compile L 63
model-method-diagnose Lo oL 65
model-method-expose_functionso 68
model-method-format 70
model-method-generate-quantities o 72
model-method-laplace 75
model-method-optimize o 79
model-method-pathfinder 86
model-method-sample 93
model-method-sample_mpi o 101
model-method-variables 107
model-method-variational L L 108
read_cmdstan_CSV L e e e e 114
register_knitr_engine L. 117
set_cmdstan_path oL 118
write_stan_file e e 119
WItE_STAN_JSON i it e e e e e e e e e e e e e e 121
Index 123
cmdstanr-package CmdStanR: the R interface to CmdStan
Description

CmdStanR: the R interface to CmdStan.

Details

CmdStanR (cmdstanr package) is an interface to Stan (mc-stan.org) for R users. It provides the
necessary objects and functions to compile a Stan program and run Stan’s algorithms from R via
CmdStan, the shell interface to Stan (mc-stan.org/users/interfaces/cmdstan).

Different ways of interfacing with Stan’s C++:

The RStan interface (rstan package) is an in-memory interface to Stan and relies on R packages
like Repp and inline to call C++ code from R. On the other hand, the CmdStanR interface does
not directly call any C++ code from R, instead relying on the CmdStan interface behind the scenes
for compilation, running algorithms, and writing results to output files.

Advantages of RStan:

» Allows other developers to distribute R packages with pre-compiled Stan programs (like
rstanarm) on CRAN. (Note: As of 2023, this can mostly be achieved with CmdStanR as
well. See Developing using CmdStanR.)

* Avoids use of R6 classes, which may result in more familiar syntax for many R users.
* CRAN binaries available for Mac and Windows.

Advantages of CmdStanR:

https://mc-stan.org
https://mc-stan.org/users/interfaces/cmdstan
https://mc-stan.org/rstan/
https://mc-stan.org/cmdstanr/articles/cmdstanr-internals.html#developing-using-cmdstanr

4 cmdstanr-package

* Compatible with latest versions of Stan. Keeping up with Stan releases is complicated for
RStan, often requiring non-trivial changes to the rstan package and new CRAN releases of
both rstan and StanHeaders. With CmdStanR the latest improvements in Stan will be avail-
able from R immediately after updating CmdStan using cmdstanr: :install_cmdstan().

* Running Stan via external processes results in fewer unexpected crashes, especially in RStu-
dio.
* Less memory overhead.

* More permissive license. RStan uses the GPL-3 license while the license for CmdStanR is
BSD-3, which is a bit more permissive and is the same license used for CmdStan and the
Stan C++ source code.

Getting started

CmdStanR requires a working version of CmdStan. If you already have CmdStan installed see
cmdstan_model () to get started, otherwise see install_cmdstan() to install CmdStan. The vi-
gnette Getting started with CmdStanR demonstrates the basic functionality of the package.

For a list of global options see cmdstanr_global_options.

Author(s)

Maintainer: Andrew Johnson <andrew. johnson@arjohnsonau.com> (ORCID)

Authors:

 Jonah Gabry <jsg2201@columbia.edu>
« Rok Cesnovar <rok.cesnovar@fri.uni-1j.si>

e Steve Bronder
Other contributors:

* Ben Bales [contributor]

e Mitzi Morris [contributor]

* Mikhail Popov [contributor]

e Mike Lawrence [contributor]

¢ William Michael Landau <will.landau@gmail.com> (ORCID) [contributor]
¢ Jacob Socolar [contributor]

e Martin Modrék [contributor]

* Ven Popov [contributor]

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Useful links:

https://mc-stan.org/cmdstanr/articles/cmdstanr.html
https://orcid.org/0000-0001-7000-8065
https://orcid.org/0000-0003-1878-3253
https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

cmdstanr-package

* https://mc-stan.org/cmdstanr/
* https://discourse.mc-stan.org

* Report bugs at https://github.com/stan-dev/cmdstanr/issues

Examples

Not run:

library(cmdstanr)
library(posterior)
library(bayesplot)
color_scheme_set("brightblue")

Set path to CmdStan

(Note: if you installed CmdStan via install_cmdstan() with default settings
then setting the path is unnecessary but the default below should still work.
Otherwise use the “path™ argument to specify the location of your

CmdStan installation.)

set_cmdstan_path(path = NULL)

Create a CmdStanModel object from a Stan program,

here using the example model that comes with CmdStan

file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")
mod <- cmdstan_model (file)

mod$print()

Print with line numbers. This can be set globally using the

“cmdstanr_print_line_numbers® option.

mod$print(line_numbers = TRUE)

Data as a named list (like RStan)
stan_data <- list(N = 10, y = ¢(0,1,0,0,0,0,0,0,0,1))

Run MCMC using the 'sample' method
fit_memec <- mod$sample(

data = stan_data,

seed = 123,

chains = 2,

parallel_chains = 2

)

Use 'posterior' package for summaries
fit_memc$summary ()

Check sampling diagnostics
fit_mcmc$diagnostic_summary()

Get posterior draws
draws <- fit_mcmc$draws()
print(draws)

Convert to data frame using posterior::as_draws_df
as_draws_df (draws)

https://mc-stan.org/cmdstanr/
https://discourse.mc-stan.org
https://github.com/stan-dev/cmdstanr/issues

cmdstanr-package

Plot posterior using bayesplot (ggplot2)
mcmc_hist(fit_memc$draws("theta"))

For models fit using MCMC, if you like working with RStan's stanfit objects
then you can create one with rstan::read_stan_csv()
stanfit <- rstan::read_stan_csv(fit_mcmc$output_files())

Run 'optimize' method to get a point estimate (default is Stan's LBFGS algorithm)
and also demonstrate specifying data as a path to a file instead of a list
my_data_file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.data.json")
fit_optim <- mod$optimize(data = my_data_file, seed = 123)

fit_optim$summary ()

Run 'optimize' again with 'jacobian=TRUE' and then draw from Laplace approximation
to the posterior

fit_optim <- mod$optimize(data = my_data_file, jacobian = TRUE)

fit_laplace <- mod$laplace(data = my_data_file, mode = fit_optim, draws = 2000)
fit_laplace$summary()

Run 'variational' method to use ADVI to approximate posterior
fit_vb <- mod$variational(data = stan_data, seed = 123)
fit_vb$summary()

meme_hist(fit_vb$draws("theta"))

Run 'pathfinder' method, a new alternative to the variational method
fit_pf <- mod$pathfinder(data = stan_data, seed = 123)
fit_pf$summary()

mcme_hist(fit_pf$draws(”theta”))

Run 'pathfinder' again with more paths, fewer draws per path,

better covariance approximation, and fewer LBFGSs iterations

fit_pf <- mod$pathfinder(data = stan_data, num_paths=10, single_path_draws=40,
history_size=50, max_lbfgs_iters=100)

Specifying initial values as a function
fit_mcmc_w_init_fun <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function() list(theta = runif(1))
)
fit_memc_w_init_fun_2 <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function(chain_id) {
silly but demonstrates optional use of chain_id
list(theta = 1 / (chain_id + 1))
}
)

as_draws.CmdStanMCMC 7

fit_memc_w_init_fun_2%$init()

Specifying initial values as a list of lists
fit_mcmc_w_init_list <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = list(
list(theta = 0.75), # chain 1
list(theta = 0.25) # chain 2
)
)
fit_optim_w_init_list <- mod$optimize(
data = stan_data,

seed = 123,

init = list(
list(theta = 0.75)

)

)
fit_optim_w_init_list$init()

End(Not run)

as_draws.CmdStanMCMC Create a draws object from a CmdStanR fitted model object

Description

Create a draws object supported by the posterior package. These methods are just wrappers around
CmdStanR’s $draws () method provided for convenience.

Usage
S3 method for class 'CmdStanMCMC'

as_draws(x, ...)

S3 method for class 'CmdStanMLE'
as_draws(x, ...)

S3 method for class 'CmdStanLaplace'’
as_draws(x, ...)

S3 method for class 'CmdStanVB'
as_draws(x, ...)

S3 method for class 'CmdStanGQ'
as_draws(x, ...)

8 as_mcmc.list

S3 method for class 'CmdStanPathfinder'

as_draws(x, ...)
Arguments
X A CmdStanR fitted model object.

Optional arguments passed to the $draws () method (e.g., variables, inc_warmup,
etc.).

Details
To subset iterations, chains, or draws, use the posterior: :subset_draws() method after creating
the draws object.

Examples

Not run:
fit <- cmdstanr_example()
as_draws(fit)

posterior's as_draws_x() methods will also work
posterior::as_draws_rvars(fit)

posterior::as_draws_list(fit)

End(Not run)

as_mcmc.list Convert CmdStanMCMC fo mcmc. list

Description

This function converts a CmdStanMCMC object to an mcmc. list object compatible with the coda
package. This is primarily intended for users of Stan coming from BUGS/JAGS who are used to
coda for plotting and diagnostics. In general we recommend the more recent MCMC diagnostics
in posterior and the ggplot2-based plotting functions in bayesplot, but for users who prefer coda
this function provides compatibility.

Usage

as_mcmc.list(x)

Arguments

X A CmdStanMCMC object.

CmdStanDiagnose 9

Value

An mcmc. list object compatible with the coda package.

Examples

Not run:
fit <- cmdstanr_example()
X <- as_mcmc.list(fit)

End(Not run)

CmdStanDiagnose CmdStanDiagnose objects

Description
A CmdStanDiagnose object is the object returned by the $diagnose() method of a CmdStanModel
object.

Methods

CmdStanDiagnose objects have the following associated methods:

Method Description
$gradients() Return gradients from diagnostic mode.
$1p(O) Return the total log probability density (target).
$init() Return user-specified initial values.
$metadata() Return a list of metadata gathered from the CmdStan CSV files.
$save_output_files() Save output CSV files to a specified location.
$save_data_file() Save JSON data file to a specified location.
See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other fitted model objects: CmdStanGQ, CmdStanLaplace, CmdStanMCMC, CmdStanMLE, CmdStanPathfinder,
CmdStanVB

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

10 CmdStanGQ

Examples

Not run:
test <- cmdstanr_example("”logistic”, method = "diagnose")

retrieve the gradients
test$gradients()

End(Not run)

CmdStanGQ CmdStanGQ objects

Description

A CmdStanGQ object is the fitted model object returned by the $generate_quantities() method
of a CmdStanModel object.

Methods

CmdStanGQ objects have the following associated methods, all of which have their own (linked)
documentation pages.

Extract contents of generated quantities object:

Method Description

$draws() Return the generated quantities as a draws_array.
$metadata() Return a list of metadata gathered from the CmdStan CSV files.
$code () Return Stan code as a character vector.

Summarize inferences:

Method Description
$summary() Run posterior::summarise_draws().

Save fitted model object and temporary files:

Method Description

$save_object() Save fitted model object to a file.
$save_output_files() Save output CSV files to a specified location.
$save_data_file() Save JSON data file to a specified location.

Report run times, console output, return codes:

CmdStanGQ 11

Method Description
$time () Report the total run time.
$output () Return the stdout and stderr of all chains or pretty print the output for a single chain.

$return_codes() Return the return codes from the CmdStan runs.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other fitted model objects: CmdStanDiagnose, CmdStanLaplace, CmdStanMCMC, CmdStanMLE, CmdStanPathfinder,
CmdStanVB

Examples

Not run:
first fit a model using MCMC
mcmc_program <- write_stan_file(
"data {
int<lower=0> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;

}
model {

y ~ bernoulli(theta);
3

)

mod_mcmc <- cmdstan_model (mcmc_program)

data <- list(N =10, y = c(1,1,0,0,0,1,0,1,0,0))
fit_mcmc <- mod_mcmc$sample(data = data, seed = 123, refresh = @)

stan program for standalone generated quantities
(could keep model block, but not necessary so removing it)
gq_program <- write_stan_file(
"data {
int<lower=0> N;
array[N] int<lower=0,upper=1>y;
}
parameters {
real<lower=0,upper=1> theta;
}
generated quantities {
array[N] int y_rep = bernoulli_rng(rep_vector(theta, N));
3

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

12 CmdStanLaplace

mod_gqg <- cmdstan_model (gq_program)
fit_ggq <- mod_gg$generate_quantities(fit_mcmc, data = data, seed = 123)
str(fit_gg$draws())

library(posterior)
as_draws_df (fit_gqg$draws())

End(Not run)

CmdStanLaplace CmdStanLaplace objects

Description
A CmdStanLaplace object is the fitted model object returned by the $laplace() method of a
CmdStanModel object.

Methods

CmdStanLaplace objects have the following associated methods, all of which have their own (linked)
documentation pages.

Extract contents of fitted model object:

Method Description

$draws() Return approximate posterior draws as a draws_matrix.

$mode () Return the mode as a CmdStanMLE object.

$1pO) Return the total log probability density (target) computed in the model block of the Stan program.
$1p_approx() Return the log density of the approximation to the posterior.

$init () Return user-specified initial values.

$metadata() Return a list of metadata gathered from the CmdStan CSV files.

$code() Return Stan code as a character vector.

Summarize inferences:

Method Description
$summary() Run posterior::summarise_draws().

Save fitted model object and temporary files:

Method Description
$save_object() Save fitted model object to a file.
$save_output_files() Save output CSV files to a specified location.

$save_data_file() Save JSON data file to a specified location.

CmdStanMCMC 13

$save_latent_dynamics_files() Save diagnostic CSV files to a specified location.

Report run times, console output, return codes:

Method Description
$time() Report the run time of the Laplace sampling step.
$output() Pretty print the output that was printed to the console.

$return_codes() Return the return codes from the CmdStan runs.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

» Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other fitted model objects: CmdStanDiagnose, CmdStanGQ, CmdStanMCMC, CmdStanMLE, CmdStanPathfinder,
CmdStanVB

CmdStanMCMC CmdStanMCMC objects

Description
A CmdStanMCMC object is the fitted model object returned by the $sample () method of a CmdStanModel
object. Like CmdStanModel objects, CmdStanMCMC objects are R6 objects.

Methods

CmdStanMCMC objects have the following associated methods, all of which have their own (linked)
documentation pages.

Extract contents of fitted model object:

Method Description
$draws() Return posterior draws using formats from the posterior package.
$sampler_diagnostics() Return sampler diagnostics as a draws_array.
$1p 0O Return the total log probability density (target).
$inv_metric() Return the inverse metric for each chain.
$init() Return user-specified initial values.
$metadata() Return a list of metadata gathered from the CmdStan CSV files.
$num_chains () Return the number of MCMC chains.

$code() Return Stan code as a character vector.

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

14 CmdStanMCMC

Summarize inferences and diagnostics:

Method Description

$print() Run posterior: :summarise_draws().

$summary () Run posterior: :summarise_draws().
$diagnostic_summary() Get summaries of sampler diagnostics and warning messages.
$cmdstan_summary () Run and print CmdStan’s bin/stansummary.
$cmdstan_diagnose() Run and print CmdStan’s bin/diagnose.

$1loo() Run loo: :1oo.array() for approximate LOO-CV

Save fitted model object and temporary files:

Method Description
$save_object() Save fitted model object to a file.
$save_output_files() Save output CSV files to a specified location.
$save_data_file() Save JSON data file to a specified location.

$save_latent_dynamics_files() Save diagnostic CSV files to a specified location.

Report run times, console output, return codes:

Method Description
$output() Return the stdout and stderr of all chains or pretty print the output for a single chain.
$time() Report total and chain-specific run times.

$return_codes() Return the return codes from the CmdStan runs.

Expose Stan functions and additional methods to R:

Method Description

$expose_functions() Expose Stan functions for use in R.

$init_model_methods() Expose methods for log-probability, gradients, parameter constraining and unconstraining.

$log_prob() Calculate log-prob.

$grad_log_prob() Calculate log-prob and gradient.

$hessian() Calculate log-prob, gradient, and hessian.

$constrain_variables() Transform a set of unconstrained parameter values to the constrained scale.

$unconstrain_variables() Transform a set of parameter values to the unconstrained scale.

$unconstrain_draws() Transform all parameter draws to the unconstrained scale.

$variable_skeleton() Helper function to re-structure a vector of constrained parameter values.
See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.
The Stan and CmdStan documentation:

¢ Stan documentation: mc-stan.org/users/documentation
* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other fitted model objects: CmdStanDiagnose, CmdStanGQ, CmdStanLaplace, CmdStanMLE, CmdStanPathfinder,
CmdStanVB

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

CmdStanMLE 15

CmdStanMLE CmdStanMLE objects

Description
A CmdStanMLE object is the fitted model object returned by the $optimize () method of a CmdStanModel
object.

Methods

CmdStanMLE objects have the following associated methods, all of which have their own (linked)
documentation pages.

Extract contents of fitted model object:

Method Description

draws () Return the point estimate as a 1-row draws_matrix.

$mle() Return the point estimate as a numeric vector.

$1pQO) Return the total log probability density (target).

$init () Return user-specified initial values.

$metadata() Return a list of metadata gathered from the CmdStan CSV files.
$code() Return Stan code as a character vector.

Summarize inferences:

Method Description
$summary() Run posterior::summarise_draws().

Save fitted model object and temporary files:

Method Description

$save_object() Save fitted model object to a file.
$save_output_files() Save output CSV files to a specified location.
$save_data_file() Save JSON data file to a specified location.

Report run times, console output, return codes:

Method Description
$time() Report the total run time.
$output() Pretty print the output that was printed to the console.

$return_codes() Return the return codes from the CmdStan runs.

16 CmdStanModel

Expose Stan functions and additional methods to R:

Method Description

$expose_functions() Expose Stan functions for use in R.

$init_model_methods() Expose methods for log-probability, gradients, parameter constraining and unconstraining.

$log_prob() Calculate log-prob.

$grad_log_prob() Calculate log-prob and gradient.

$hessian() Calculate log-prob, gradient, and hessian.

$constrain_variables() Transform a set of unconstrained parameter values to the constrained scale.

$unconstrain_variables() Transform a set of parameter values to the unconstrained scale.

$unconstrain_draws() Transform all parameter draws to the unconstrained scale.

$variable_skeleton() Helper function to re-structure a vector of constrained parameter values.
See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

» Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other fitted model objects: CmdStanDiagnose, CmdStanGQ, CmdStanLaplace, CmdStanMCMC, CmdStanPathfinder,
CmdStanVB

CmdStanModel CmdStanModel objects

Description

A CmdStanModel object is an R6 object created by the cmdstan_model() function. The object
stores the path to a Stan program and compiled executable (once created), and provides methods
for fitting the model using Stan’s algorithms.

Methods

CmdStanModel objects have the following associated methods, many of which have their own
(linked) documentation pages:

Stan code:

Method Description

$stan_file() Return the file path to the Stan program.
$code() Return Stan program as a character vector.
$print() Print readable version of Stan program.

$check_syntax() Check Stan syntax without having to compile.
$format() Format and canonicalize the Stan model code.

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

CmdStanModel 17

Compilation:
Method Description
$compile() Compile Stan program.
$exe_file() Return the file path to the compiled executable.
$hpp_file() Return the file path to the . hpp file containing the generated C++ code.
$save_hpp_file() Save the . hpp file containing the generated C++ code.

$expose_functions() Expose Stan functions for use in R.

Diagnostics:

Method Description
$diagnose() Run CmdStan’s "diagnose"” method to test gradients, return CmdStanDiagnose object.

Model fitting:
Method Description
$sample() Run CmdStan’s "sample” method, return CmdStanMCMC object.
$sample_mpi() Run CmdStan’s "sample” method with MPI, return CmdStanMCMC object.
$optimize() Run CmdStan’s "optimize” method, return CmdStanMLE object.
$variational() Run CmdStan’s "variational” method, return CmdStanVB object.
$pathfinder() Run CmdStan’s "pathfinder” method, return CmdStanPathfinder object.

$generate_quantities() Run CmdStan’s "generate quantities” method, return CmdStanGQ object.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Examples

Not run:

library(cmdstanr)
library(posterior)
library(bayesplot)
color_scheme_set("brightblue")

Set path to CmdStan

(Note: if you installed CmdStan via install_cmdstan() with default settings
then setting the path is unnecessary but the default below should still work.
Otherwise use the “path™ argument to specify the location of your

CmdStan installation.)

https://mc-stan.org/math/md_doxygen_2parallelism__support_2mpi__parallelism.html
https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

18

CmdStanModel

set_cmdstan_path(path = NULL)

Create a CmdStanModel object from a Stan program,

here using the example model that comes with CmdStan

file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")
mod <- cmdstan_model(file)

mod$print()

Print with line numbers. This can be set globally using the

~cmdstanr_print_line_numbers® option.

mod$print(line_numbers = TRUE)

Data as a named list (like RStan)
stan_data <- list(N =10, y = c(0,1,0,0,0,0,0,0,0,1))

Run MCMC using the 'sample' method
fit_memc <- mod$sample(

data = stan_data,

seed = 123,

chains = 2,

parallel_chains = 2

)

Use 'posterior' package for summaries
fit_memc$summary ()

Check sampling diagnostics
fit_mcmc$diagnostic_summary()

Get posterior draws
draws <- fit_mcmc$draws()
print(draws)

Convert to data frame using posterior::as_draws_df
as_draws_df (draws)

Plot posterior using bayesplot (ggplot2)
mcme_hist(fit_memc$draws("theta”))

For models fit using MCMC, if you like working with RStan's stanfit objects
then you can create one with rstan::read_stan_csv()
stanfit <- rstan::read_stan_csv(fit_mcmc$output_files())

Run 'optimize' method to get a point estimate (default is Stan's LBFGS algorithm)
and also demonstrate specifying data as a path to a file instead of a list
my_data_file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.data.json")
fit_optim <- mod$optimize(data = my_data_file, seed = 123)

fit_optim$summary ()

Run 'optimize' again with 'jacobian=TRUE' and then draw from Laplace approximation
to the posterior

fit_optim <- mod$optimize(data = my_data_file, jacobian = TRUE)

fit_laplace <- mod$laplace(data = my_data_file, mode = fit_optim, draws = 2000)

CmdStanModel

fit_laplace$summary()

Run 'variational' method to use ADVI to approximate posterior
fit_vb <- mod$variational(data = stan_data, seed = 123)
fit_vb$summary()

mcmc_hist(fit_vb$draws(”theta"))

Run 'pathfinder' method, a new alternative to the variational method
fit_pf <- mod$pathfinder(data = stan_data, seed = 123)
fit_pf$summary()

mcmc_hist(fit_pf$draws(”theta”))

Run 'pathfinder' again with more paths, fewer draws per path,

better covariance approximation, and fewer LBFGSs iterations

fit_pf <- mod$pathfinder(data = stan_data, num_paths=10, single_path_draws=40,
history_size=50, max_lbfgs_iters=100)

Specifying initial values as a function
fit_mcmc_w_init_fun <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function() list(theta = runif(1))
)
fit_memc_w_init_fun_2 <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function(chain_id) {
silly but demonstrates optional use of chain_id
list(theta = 1 / (chain_id + 1))
}
)

fit_memc_w_init_fun_2$init()

Specifying initial values as a list of lists
fit_memc_w_init_list <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = list(
list(theta = 0.75), # chain 1
list(theta = 0.25) # chain 2

)
)
fit_optim_w_init_list <- mod$optimize(
data = stan_data,
seed = 123,
init = list(
list(theta = 0.75)

20 CmdStanPathfinder

)
)
fit_optim_w_init_list$init()

End(Not run)

CmdStanPathfinder CmdStanPathfinder objects

Description
A CmdStanPathfinder object is the fitted model object returned by the $pathfinder () method of
a CmdStanModel object.

Methods

CmdStanPathfinder objects have the following associated methods, all of which have their own
(linked) documentation pages.

Extract contents of fitted model object:

Method Description

$draws() Return approximate posterior draws as a draws_matrix.

$1pQO Return the total log probability density (target) computed in the model block of the Stan program.
$1p_approx() Return the log density of the approximation to the posterior.

$init () Return user-specified initial values.

$metadata() Return a list of metadata gathered from the CmdStan CSV files.

$code() Return Stan code as a character vector.

Summarize inferences:

Method Description
$summary () Run posterior: :summarise_draws().
$cmdstan_summary() Run and print CmdStan’s bin/stansummary.

Save fitted model object and temporary files:

Method Description
$save_object() Save fitted model object to a file.
$save_output_files() Save output CSV files to a specified location.
$save_data_file() Save JSON data file to a specified location.

$save_latent_dynamics_files() Save diagnostic CSV files to a specified location.

cmdstanr_example 21

Report run times, console output, return codes:

Method Description
$time() Report the total run time.
$output() Pretty print the output that was printed to the console.

$return_codes() Return the return codes from the CmdStan runs.

See Also
The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.
The Stan and CmdStan documentation:

» Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other fitted model objects: CmdStanDiagnose, CmdStanGQ, CmdStanLaplace, CmdStanMCMC, CmdStanMLE,
CmdStanVB

cmdstanr_example Fit models for use in examples

Description

Fit models for use in examples

Usage

cmdstanr_example(
example = c("logistic"”, "schools”, "schools_ncp"),
method = c("sample”, "optimize"”, "laplace”, "variational”, "pathfinder"”, "diagnose”),
quiet = TRUE,
force_recompile = getOption("cmdstanr_force_recompile”, default = FALSE)

)

print_example_program(example = c("logistic”, "schools”, "schools_ncp"))
Arguments
example (string) The name of the example. The currently available examples are

* "logistic": logistic regression with intercept and 3 predictors.

* "schools": the so-called "eight schools" model, a hierarchical meta-analysis.
Fitting this model will result in warnings about divergences.

* "schools_ncp": non-centered parameterization of the "eight schools" model
that fixes the problem with divergences.

To print the Stan code for a given example use print_example_program(example).

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

22 cmdstanr._global_options

method (string) Which fitting method should be used? The default is the "sample”
method MCMCO).

Arguments passed to the chosen method. See the help pages for the individual
methods for details.

quiet (logical) If TRUE (the default) then fitting the model is wrapped inutils: :capture.output().

force_recompile
Passed to the $compile() method.

Value

The fitted model object returned by the selected method.

Examples

Not run:

print_example_program("logistic")

fit_logistic_mcmc <- cmdstanr_example(”logistic”, chains = 2)
fit_logistic_memc$summary ()

fit_logistic_optim <- cmdstanr_example("”logistic”, method = "optimize")
fit_logistic_optim$summary()

fit_logistic_vb <- cmdstanr_example("logistic"”, method = "variational”)
fit_logistic_vb$summary()

print_example_program(”schools")
fit_schools_mcmc <- cmdstanr_example("”schools")
fit_schools_mcmc$summary ()

print_example_program("”schools_ncp")
fit_schools_ncp_mcmc <- cmdstanr_example("”schools_ncp")

fit_schools_ncp_mcmc$summary ()

optimization fails for hierarchical model
cmdstanr_example(”schools”, "optimize", quiet = FALSE)

End(Not run)

cmdstanr_global_options
CmdStanR global options

Description

These options can be set via options() for an entire R session.

CmdStanVB 23

Details

e cmdstanr_draws_format: Which format provided by the posterior package should be used
when returning the posterior or approximate posterior draws? The default depends on the
model fitting method. See draws for more details.

* cmdstanr_force_recompile: Should the default be to recompile models even if there were
no Stan code changes since last compiled? See compile for more details. The default is FALSE.

* cmdstanr_max_rows: The maximum number of rows of output to print when using the
$print () method. The default is 10.

e cmdstanr_no_ver_check: Should the check for a more recent version of CmdStan be dis-
abled? The default is FALSE.

* cmdstanr_output_dir: The directory where CmdStan should write its output CSV files when
fitting models. The default is a temporary directory. Files in a temporary directory are re-
moved as part of R garbage collection, while files in an explicitly defined directory are not
automatically deleted.

* cmdstanr_verbose: Should more information be printed when compiling or running models,
including showing how CmdStan was called internally? The default is FALSE.

* cmdstanr_warn_inits: Should a warning be thrown if initial values are only provided for a
subset of parameters? The default is TRUE.

e cmdstanr_write_stan_file_dir: The directory where write_stan_file() should write
Stan files. The default is a temporary directory. Files in a temporary directory are removed as
part of R garbage collection, while files in an explicitly defined directory are not automatically
deleted.

* mc.cores: The number of cores to use for various parallelization tasks (e.g. running MCMC
chains, installing CmdStan). The default depends on the use case and is documented with the
methods that make use of mc. cores.

CmdStanVB CmdStanVB objects

Description
A CmdStanVB object is the fitted model object returned by the $variational() method of a
CmdStanModel object.

Methods

CmdStanVB objects have the following associated methods, all of which have their own (linked)
documentation pages.

Extract contents of fitted model object:

Method Description
$draws() Return approximate posterior draws as a draws_matrix.
$1pQO Return the total log probability density (target) computed in the model block of the Stan program.

24 CmdStanVB

$1p_approx() Return the log density of the variational approximation to the posterior.

$init () Return user-specified initial values.
$metadata() Return a list of metadata gathered from the CmdStan CSV files.
$code() Return Stan code as a character vector.

Summarize inferences:

Method Description
$summary () Run posterior: :summarise_draws().
$cmdstan_summary() Run and print CmdStan’s bin/stansummary.

Save fitted model object and temporary files:

Method Description
$save_object() Save fitted model object to a file.
$save_output_files() Save output CSV files to a specified location.
$save_data_file() Save JSON data file to a specified location.

$save_latent_dynamics_files() Save diagnostic CSV files to a specified location.

Report run times, console output, return codes:

Method Description
$time() Report the total run time.
$output () Pretty print the output that was printed to the console.

$return_codes() Return the return codes from the CmdStan runs.

Expose Stan functions and additional methods to R:

Method Description

$expose_functions() Expose Stan functions for use in R.

$init_model_methods() Expose methods for log-probability, gradients, parameter constraining and unconstraining.

$log_prob() Calculate log-prob.

$grad_log_prob() Calculate log-prob and gradient.

$hessian() Calculate log-prob, gradient, and hessian.

$constrain_variables() Transform a set of unconstrained parameter values to the constrained scale.

$unconstrain_variables() Transform a set of parameter values to the unconstrained scale.

$unconstrain_draws() Transform all parameter draws to the unconstrained scale.

$variable_skeleton() Helper function to re-structure a vector of constrained parameter values.
See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/

cmdstan_coercion 25

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other fitted model objects: CmdStanDiagnose, CmdStanGQ, CmdStanLaplace, CmdStanMCMC, CmdStanMLE,
CmdStanPathfinder

cmdstan_coercion Coercion methods for CmdStan objects

Description

These are generic functions intended to primarily be used by developers of packages that interface
with on CmdStanR. Developers can define methods on top of these generics to coerce objects into
CmdStanR’s fitted model objects.

Usage
as.CmdStanMCMC(object, ...)
as.CmdStanMLE (object, ...)
as.CmdStanLaplace(object, ...)
as.CmdStanVB(object, ...)
as.CmdStanPathfinder(object, ...)
as.CmdStanGQ(object, ...)

as.CmdStanDiagnose(object, ...)

Arguments

object to be coerced

additional arguments

cmdstan_model Create a new CmdStanModel object

Description

Create a new CmdStanModel object from a file containing a Stan program or from an existing Stan
executable. The CmdStanModel object stores the path to a Stan program and compiled executable
(once created), and provides methods for fitting the model using Stan’s algorithms.

See the compile and . .. arguments for control over whether and how compilation happens.

https://mc-stan.org/docs/cmdstan-guide/

26 cmdstan_model

Usage
cmdstan_model (stan_file = NULL, exe_file = NULL, compile = TRUE, ...)
Arguments
stan_file (string) The path to a . stan file containing a Stan program. The helper function
write_stan_file() is provided for cases when it is more convenient to specify
the Stan program as a string. If stan_file is not specified then exe_file must
be specified.
exe_file (string) The path to an existing Stan model executable. Can be provided instead
of or in addition to stan_file (if stan_file is omitted some CmdStanModel
methods like $code () and $print() will not work). This argument can only be
used with CmdStan 2.27+.
compile (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.
Optionally, additional arguments to pass to the $compile () method if compile=TRUE.
These options include specifying the directory for saving the executable, turning
on pedantic mode, specifying include paths, configuring C++ options, and more.
See $compile() for details.
Value

A CmdStanModel object.

See Also

install_cmdstan(), $compile(), $check_syntax()
The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Examples

Not run:

library(cmdstanr)
library(posterior)
library(bayesplot)
color_scheme_set("brightblue")

Set path to CmdStan

(Note: if you installed CmdStan via install_cmdstan() with default settings
then setting the path is unnecessary but the default below should still work.
Otherwise use the “path™ argument to specify the location of your

CmdStan installation.)

set_cmdstan_path(path = NULL)

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

cmdstan_model

Create a CmdStanModel object from a Stan program,

here using the example model that comes with CmdStan

file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")
mod <- cmdstan_model(file)

mod$print()

Print with line numbers. This can be set globally using the

“cmdstanr_print_line_numbers™ option.

mod$print(line_numbers = TRUE)

Data as a named list (like RStan)
stan_data <- list(N =10, y = c(0,1,0,0,0,0,0,0,0,1))

Run MCMC using the 'sample' method
fit_mcmc <- mod$sample(

data = stan_data,

seed = 123,

chains = 2,

parallel_chains = 2

)

Use 'posterior' package for summaries
fit_mcmc$summary ()

Check sampling diagnostics
fit_mcmc$diagnostic_summary()

Get posterior draws
draws <- fit_mcmc$draws()
print(draws)

Convert to data frame using posterior::as_draws_df
as_draws_df (draws)

Plot posterior using bayesplot (ggplot2)
mcmc_hist(fit_mcmc$draws(”theta”))

For models fit using MCMC, if you like working with RStan's stanfit objects
then you can create one with rstan::read_stan_csv()
stanfit <- rstan::read_stan_csv(fit_mcmc$output_files())

Run 'optimize' method to get a point estimate (default is Stan's LBFGS algorithm)
and also demonstrate specifying data as a path to a file instead of a list
my_data_file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.data.json")
fit_optim <- mod$optimize(data = my_data_file, seed = 123)

fit_optim$summary ()

Run 'optimize' again with 'jacobian=TRUE' and then draw from Laplace approximation
to the posterior

fit_optim <- mod$optimize(data = my_data_file, jacobian = TRUE)

fit_laplace <- mod$laplace(data = my_data_file, mode = fit_optim, draws = 2000)
fit_laplace$summary()

27

28

cmdstan_model

Run 'variational' method to use ADVI to approximate posterior
fit_vb <- mod$variational(data = stan_data, seed = 123)
fit_vb$summary()

mcmc_hist(fit_vb$draws("theta"))

Run 'pathfinder' method, a new alternative to the variational method
fit_pf <- mod$pathfinder(data = stan_data, seed = 123)
fit_pf$summary()

mcmc_hist(fit_pf$draws(”theta”))

Run 'pathfinder' again with more paths, fewer draws per path,

better covariance approximation, and fewer LBFGSs iterations

fit_pf <- mod$pathfinder(data = stan_data, num_paths=10, single_path_draws=40,
history_size=50, max_lbfgs_iters=100)

Specifying initial values as a function
fit_memc_w_init_fun <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function() list(theta = runif(1))
)
fit_memc_w_init_fun_2 <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function(chain_id) {
silly but demonstrates optional use of chain_id
list(theta = 1 / (chain_id + 1))
}
)

fit_memc_w_init_fun_2%$init()

Specifying initial values as a list of lists
fit_memc_w_init_list <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = list(
list(theta
list(theta

0.75), # chain 1
0.25) # chain 2

)
)
fit_optim_w_init_list <- mod$optimize(
data = stan_data,
seed = 123,
init = list(
list(theta = 0.75)
)
)

draws_to_csv 29

fit_optim_w_init_list$init()

End(Not run)

draws_to_csv Write posterior draws objects to CSV files suitable for running stan-
dalone generated quantities with CmdStan.

Description

Write posterior draws objects to CSV files suitable for running standalone generated quantities with
CmdStan.

Usage

draws_to_csv(
draws,
sampler_diagnostics = NULL,
dir = tempdir(),

basename = "fittedParams”
)
Arguments
draws A posterior: :draws_x object.

sampler_diagnostics
Either NULL or a posterior: :draws_x* object of sampler diagnostics.

dir (string) An optional path to the directory where the CSV files will be written. If
not set, temporary directory is used.

basename (string) If dir is specified, ‘basename” is used for naming the output CSV files.
If not specified, the file names are randomly generated.

Details

draws_to_csv() generates a CSV suitable for running standalone generated quantities with Cmd-
Stan. The CSV file contains a single comment #num_samples, which equals the number of itera-
tions in the supplied draws object.

The comment is followed by the column names. The first column is the 1p__ value, followed by
sampler diagnostics and finnaly other variables of the draws object. # If the draws object does
not contain the 1p__ or sampler diagnostics variables, columns with zeros are created in order to
conform with the requirements of the standalone generated quantities method of CmdStan.

The column names line is finally followed by the values of the draws in the same order as the
column names.

30 eng_cmdstan

Value

Paths to CSV files (one per chain).

Examples

Not run:
draws <- posterior::example_draws()

draws_csv_files <- draws_to_csv(draws)
print(draws_csv_files)

draws_csv_files <- draws_to_csv(draws,

sampler_diagnostic = sampler_diagnostics,
dir = "~/my_folder”,
basename = "my-samples”)

End(Not run)

eng_cmdstan CmdStan knitr engine for Stan

Description

This provides a knitr engine for Stan, suitable for usage when attempting to render Stan chunks and
compile the model code within to an executable with CmdStan. Use register_knitr_engine()
to make this the default engine for stan chunks. See the vignette R Markdown CmdStan Engine
for an example.

Usage

eng_cmdstan(options)

Arguments

options (named list) Chunk options, as provided by knitr during chunk execution.

Examples

Not run:
knitr::knit_engines$set(stan = cmdstanr::eng_cmdstan)

End(Not run)

https://mc-stan.org/cmdstanr/articles/r-markdown.html

fit-method-cmdstan_summary 31

fit-method-cmdstan_summary
Run CmdStan’s stansummary and diagnose utilities

Description

Run CmdStan’s stansummary and diagnose utilities. These are documented in the CmdStan
Guide:

* https://mc-stan.org/docs/cmdstan-guide/stansummary.html

* https://mc-stan.org/docs/cmdstan-guide/diagnose.html

Although these methods can be used for models fit using the $variational () method, much of the
output is currently only relevant for models fit using the $sample () method.

See the $summary() for computing similar summaries in R rather than calling CmdStan’s utilites.

Usage

cmdstan_summary(flags = NULL)

cmdstan_diagnose()

Arguments

flags An optional character vector of flags (e.g. flags = c("--sig_figs=1")).

See Also

CmdStanMCMC, fit-method-summary

Examples

Not run:

fit <- cmdstanr_example("logistic")
fit$cmdstan_diagnose()
fit$cmdstan_summary ()

End(Not run)

32 fit-method-constrain_variables

fit-method-code Return Stan code

Description

Return Stan code

Usage
code()

Value

A character vector with one element per line of code.

See Also

CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanGQ

Examples

Not run:

fit <- cmdstanr_example()

fit$code() # character vector
cat(fit$code(), sep = "\n") # pretty print

End(Not run)

fit-method-constrain_variables

Transform a set of unconstrained parameter values to the constrained
scale

Description

The $constrain_variables() method transforms input parameters to the constrained scale.

Usage

constrain_variables(
unconstrained_variables,
transformed_parameters = TRUE,
generated_quantities = TRUE

)

fit-method-diagnostic_summary 33

Arguments
unconstrained_variables
(numeric) A vector of unconstrained parameters to constrain.

transformed_parameters

(logical) Whether to return transformed parameters implied by newly-constrained
parameters (defaults to TRUE).

generated_quantities

(logical) Whether to return generated quantities implied by newly-constrained
parameters (defaults to TRUE).

See Also

log_prob(), grad_log_prob(), constrain_variables(),unconstrain_variables(), unconstrain_draws(),
variable_skeleton(), hessian()

Examples

Not run:
fit_mcmc <- cmdstanr_example(”logistic”, method = "sample”, force_recompile = TRUE)
fit_mcmc$constrain_variables(unconstrained_variables = c(0.5, 1.2, 1.1, 2.2))

End(Not run)

fit-method-diagnostic_summary
Sampler diagnostic summaries and warnings

Description

Warnings and summaries of sampler diagnostics. To instead get the underlying values of the sampler
diagnostics for each iteration and chain use the $sampler_diagnostics() method.

Currently parameter-specific diagnostics like R-hat and effective sample size are not handled by this
method. Those diagnostics are provided via the $summary () method (using posterior: :summarize_draws()).

Usage

diagnostic_summary(
diagnostics = c("divergences”, "treedepth”, "ebfmi"),
quiet = FALSE

)

34 fit-method-draws

Arguments
diagnostics (character vector) One or more diagnostics to check. The currently supported
diagnostics are "divergences, "treedepth”, and "ebfmi. The default is to
check all of them.
quiet (logical) Should warning messages about the diagnostics be suppressed? The
default is FALSE, in which case warning messages are printed in addition to
returning the values of the diagnostics.
Value

A list with as many named elements as diagnostics selected. The possible elements and their
values are:

* "num_divergent”: A vector of the number of divergences per chain.
* "num_max_treedepth”: A vector of the number of times max_treedepth was hit per chain.
* "ebfmi”: A vector of E-BFMI values per chain.

See Also

CmdStanMCMC and the $sampler_diagnostics() method

Examples

Not run:

fit <- cmdstanr_example("”schools")
fit$diagnostic_summary()
fit$diagnostic_summary(quiet = TRUE)

End(Not run)

fit-method-draws Extract posterior draws

Description

Extract posterior draws after MCMC or approximate posterior draws after variational approxima-
tion using formats provided by the posterior package.

The variables include the parameters, transformed parameters, and generated quantities from the
Stan program as well as 1p__, the total log probability (target) accumulated in the model block.

Usage

draws(
variables = NULL,
inc_warmup = FALSE,
format = getOption("cmdstanr_draws_format")

)

fit-method-draws

Arguments

variables

inc_warmup

format

Value

35

(character vector) Optionally, the names of the variables (parameters, trans-
formed parameters, and generated quantities) to read in.

e If NULL (the default) then all variables are included.

nn

* If an empty string (variables="") then none are included.

* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta" selects all elements of theta;

— variables = c("thetal[1]", "theta[3]") selects only the 1stand 3rd
elements.

(logical) Should warmup draws be included? Defaults to FALSE. Ignored except
when used with CmdStanMCMC objects.

(string) The format of the returned draws or point estimates. Must be a valid
format from the posterior package. The defaults are the following.

 For sampling and generated quantities the default is "draws_array”. This
format keeps the chains separate. To combine the chains use any of the
other formats (e.g. "draws_matrix").

* For point estimates from optimization and approximate draws from varia-
tional inference the default is "draws_matrix".

To use a different format it can be specified as the full name of the format from
the posterior package (e.g. format = "draws_df") or omitting the "draws_"
prefix (e.g. format = "df").

Changing the default format: To change the default format for an entire R ses-
sion use options(cmdstanr_draws_format = format), where format is the
name (in quotes) of a valid format from the posterior package. For example
options(cmdstanr_draws_format = "draws_df") will change the default to
a data frame.

Note about efficiency: For models with a large number of parameters (20k+)
we recommend using the "draws_list"” format, which is the most efficient and
RAM friendly when combining draws from multiple chains. If speed or memory
is not a constraint we recommend selecting the format that most suits the coding
style of the post processing phase.

Depends on the value of format. The defaults are:

* For MCMC, a 3-D draws_array object (iteration x chain x variable).

* For standalone generated quantities, a 3-D draws_array object (iteration x chain x variable).

* For variational inference, a 2-D draws_matrix object (draw x variable) because there are no
chains. An additional variable 1p_approx__ is also included, which is the log density of the
variational approximation to the posterior evaluated at each of the draws.

* For optimization, a 1-row draws_matrix with one column per variable. These are not actually
draws, just point estimates stored in the draws_matrix format. See $mle() to extract them as
a numeric vector.

36 fit-method-gradients

See Also

CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanGQ

Examples
Not run:
logistic regression with intercept alpha and coefficients beta
fit <- cmdstanr_example(”logistic”, method = "sample”)

returned as 3-D array (see ?posterior::draws_array)
draws <- fit$draws()

dim(draws)

str(draws)

can easily convert to other formats (data frame, matrix, list)
using the posterior package
head(posterior::as_draws_matrix(draws))

or can specify 'format' argument to avoid manual conversion
matrix format combines all chains

draws <- fit$draws(format = "matrix")

head(draws)

can select specific parameters
fit$draws("alpha")

fit$draws("beta”) # selects entire vector beta
fit$draws(c("alpha”, "betal[2]1"))

can be passed directly to bayesplot plotting functions
bayesplot::color_scheme_set("brightblue”)
bayesplot::mcmc_dens(fit$draws(c(”alpha”, "beta")))
bayesplot::mcmc_scatter(fit$draws(c("betal1]1", "betal2]")), alpha = 0.3)

example using variational inference

fit <- cmdstanr_example("”logistic"”, method = "variational”)
head(fit$draws("beta”)) # a matrix by default
head(fit$draws("beta”, format = "df"))

End(Not run)

fit-method-gradients Extract gradients after diagnostic mode

Description

Return the data frame containing the gradients for all parameters.

fit-method-grad_log_prob 37

Usage

gradients()

Value

A list of lists. See Examples.

See Also

CmdStanDiagnose

Examples

Not run:
test <- cmdstanr_example(”logistic”, method = "diagnose")

retrieve the gradients
test$gradients()

End(Not run)

fit-method-grad_log_prob
Calculate the log-probability and the gradient w.r.t. each input for a
given vector of unconstrained parameters

Description

The $grad_log_prob() method provides access to the Stan model’s log_prob function and its
derivative.

Usage

grad_log_prob(
unconstrained_variables,
jacobian = TRUE,
jacobian_adjustment = NULL
)

Arguments

unconstrained_variables
(numeric) A vector of unconstrained parameters.

jacobian (logical) Whether to include the log-density adjustments from un/constraining
variables.

jacobian_adjustment
Deprecated. Please use jacobian instead.

38 fit-method-hessian

See Also
log_prob(), grad_log_prob(), constrain_variables(), unconstrain_variables(), unconstrain_draws(),
variable_skeleton(), hessian()

Examples

Not run:
fit_mcmc <- cmdstanr_example(”logistic”, method = "sample”, force_recompile = TRUE)
fit_mcmc$grad_log_prob(unconstrained_variables = c(0.5, 1.2, 1.1, 2.2))

End(Not run)

fit-method-hessian Calculate the log-probability , the gradient w.r.t. each input, and the
hessian for a given vector of unconstrained parameters

Description

The $hessian() method provides access to the Stan model’s log_prob, its derivative, and its hes-
sian.

Usage

hessian(unconstrained_variables, jacobian = TRUE, jacobian_adjustment = NULL)

Arguments
unconstrained_variables
(numeric) A vector of unconstrained parameters.

jacobian (logical) Whether to include the log-density adjustments from un/constraining
variables.
jacobian_adjustment

Deprecated. Please use jacobian instead.
See Also
log_prob(), grad_log_prob(), constrain_variables(),unconstrain_variables(), unconstrain_draws(),
variable_skeleton(), hessian()

Examples

Not run:

fit_mcmc <- cmdstanr_example(”logistic”, method = "sample”, force_recompile = TRUE)
fit_mcmc$init_model_methods(hessian = TRUE)

fit_mcmc$hessian(unconstrained_variables = c¢(0.5, 1.2, 1.1, 2.2))

End(Not run)

fit-method-init 39

fit-method-init Extract user-specified initial values

Description

Return user-specified initial values. If the user provided initial values files or R objects (list of lists
or function) via the init argument when fitting the model then these are returned (always in the
list of lists format). Currently it is not possible to extract initial values generated automatically by
CmdStan, although CmdStan may support this in the future.

Usage

init()

Value

A list of lists. See Examples.

See Also

CmdStanMCMC, CmdStanMLE, CmdStanVB

Examples

Not run:

init_fun <- function() list(alpha = rnorm(1), beta = rnorm(3))
fit <- cmdstanr_example(”logistic”, init = init_fun, chains = 2)
str(fit$init())

partial inits (only specifying for a subset of parameters)
init_list <- list(

list(mu = 10, tau = 2),

list(mu = -10, tau = 1)
)

fit <- cmdstanr_example(”schools_ncp”, init = init_list, chains = 2, adapt_delta = 0.9)

only user-specified inits returned
str(fit$init())

End(Not run)

40 fit-method-inv_metric

fit-method-init_model_methods
Compile additional methods for accessing the model log-probability
function and parameter constraining and unconstraining.

Description

The $init_model_methods() method compiles and initializes the log_prob, grad_log_prob,
constrain_variables, unconstrain_variables and unconstrain_draws functions. These are
then available as methods of the fitted model object. This requires the additional Rcpp package,
which are not required for fitting models using CmdStanR.

Note: there may be many compiler warnings emitted during compilation but these can be ignored
so long as they are warnings and not errors.

Usage
init_model_methods(seed = 1, verbose = FALSE, hessian = FALSE)

Arguments
seed (integer) The random seed to use when initializing the model.
verbose (logical) Whether to show verbose logging during compilation.
hessian (logical) Whether to expose the (experimental) hessian method.
See Also

log_prob(), grad_log_prob(), constrain_variables(),unconstrain_variables(), unconstrain_draws(),
variable_skeleton(), hessian()

Examples

Not run:
fit_mcmc <- cmdstanr_example(”logistic”, method = "sample”, force_recompile = TRUE)

End(Not run)

fit-method-inv_metric Extract inverse metric (mass matrix) after MCMC

Description

Extract the inverse metric (mass matrix) for each MCMC chain.

Usage

inv_metric(matrix = TRUE)

fit-method-log_prob 41

Arguments
matrix (logical) If a diagonal metric was used, setting matrix = FALSE returns a list
containing just the diagonals of the matrices instead of the full matrices. Setting
matrix = FALSE has no effect for dense metrics.
Value

A list of length equal to the number of MCMC chains. See the matrix argument for details.

See Also

CmdStanMCMC

Examples

Not run:

fit <- cmdstanr_example("logistic")
fit$inv_metric()
fit$inv_metric(matrix=FALSE)

fit <- cmdstanr_example("logistic”, metric = "dense_e")
fit$inv_metric()

End(Not run)

fit-method-log_prob Calculate the log-probability given a provided vector of unconstrained
parameters.

Description

The $log_prob() method provides access to the Stan model’s 1log_prob function.

Usage

log_prob(unconstrained_variables, jacobian = TRUE, jacobian_adjustment = NULL)

Arguments

unconstrained_variables
(numeric) A vector of unconstrained parameters.

jacobian (logical) Whether to include the log-density adjustments from un/constraining
variables.

jacobian_adjustment
Deprecated. Please use jacobian instead.

42

See Also

fit-method-loo

log_prob(), grad_log_prob(), constrain_variables(), unconstrain_variables(), unconstrain_draws(),

variable_skeleton(), hessian()

Examples

Not run:

fit_mcmc <- cmdstanr_example(”logistic”, method = "sample”, force_recompile = TRUE)

fit_mcmc$log_prob(unconstrained_variables = c(0.5, 1.2, 1.1, 2.2))

End(Not run)

fit-method-loo Leave-one-out cross-validation (LOO-CV)

Description

The $loo() method computes approximate LOO-CV using the loo package.

In order to use

this method you must compute and save the pointwise log-likelihood in your Stan program. See

loo::1loo.array() and the loo package vignettes for details.

Usage
loo(variables = "log_lik", r_eff = TRUE, moment_match = FALSE, ...)
Arguments
variables (character vector) The name(s) of the variable(s) in the Stan program contain-
ing the pointwise log-likelihood. The default is to look for "log_lik". This
argument is passed to the $draws () method.
r_eff (multiple options) How to handle the r_eff argument for 1oo():

* TRUE (the default) will automatically call 1loo: :relative_eff.array() to
compute the r_eff argument to pass to 1loo: :1loo.array().

* FALSE or NULL will avoid computing r_eff (which can sometimes be slow),
but the reported ESS and MCSE estimates can be over-optimistic if the

posterior draws are not (near) independent.

» If r_eff is anything else, that object will be passed as the r_eff argument

to loo: :1oo.array().

moment_match (logical) Whether to use a moment-matching correction for problematic obser-
vations. The default is FALSE. Using moment_match=TRUE will result in compil-
ing the additional methods described in fit-method-init_model_methods. This
allows CmdStanR to automatically supply the functions for the log_lik_i,

unconstrain_pars, log_prob_upars, and log_lik_i_upars arguments to loo

Other arguments (e.g., cores, save_psis, etc.) passed to loo::1loo.array()
or 1oo: :loo_moment_match.default() (if moment_match = TRUE is set).

::1loo_moment_match(}

https://mc-stan.org/loo/articles/

fit-method-Ip 43

Value

The object returned by 1oo: :1oo.array() or 1oo: :loo_moment_match.default().

See Also

The loo package website with documentation and vignettes.

Examples

Not run:

the "logistic” example model has "log_lik” in generated quantities
fit <- cmdstanr_example("logistic")

loo_result <- fit$loo(cores = 2)

print(loo_result)

End(Not run)

fit-method-1p Extract log probability (target)

Description

The $1p() method extracts 1p__, the total log probability (target) accumulated in the model block
of the Stan program. For variational inference the log density of the variational approximation to the
posterior is available via the $1p_approx () method. For Laplace approximation the unnormalized
density of the approximation to the posterior is available via the $1p_approx() method.

See the Log Probability Increment vs. Sampling Statement section of the Stan Reference Manual
for details on when normalizing constants are dropped from log probability calculations.

Usage
1IrO
1p_approx()

1p_approx()

Value

A numeric vector with length equal to the number of (post-warmup) draws or length equal to 1 for
optimization.

https://mc-stan.org/loo/reference/index.html
https://mc-stan.org/loo/articles/
https://mc-stan.org/docs/reference-manual/sampling-statements.html

44 fit-method-metadata

Details

1p__is the unnormalized log density on Stan’s unconstrained space. This will in general be different
than the unnormalized model log density evaluated at a posterior draw (which is on the constrained
space). 1p__ is intended to diagnose sampling efficiency and evaluate approximations.

For variational inference 1p_approx__ is the log density of the variational approximation to 1p__
(also on the unconstrained space). It is exposed in the variational method for performing the checks
described in Yao et al. (2018) and implemented in the loo package.

For Laplace approximation 1p_approx__ is the unnormalized density of the Laplace approxima-
tion. It can be used to perform the same checks as in the case of the variational method described
in Yao et al. (2018).

References

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018). Yes, but did it work?: Evaluating
variational inference. Proceedings of the 35th International Conference on Machine Learning,
PMLR 80:5581-5590.

See Also
CmdStanMCMC, CmdStanMLE, CmdStanLaplace, CmdStanVB

Examples

Not run:
fit_mcmc <- cmdstanr_example("logistic")
head(fit_mcmc$1lp())

fit_mle <- cmdstanr_example("logistic”, method = "optimize")
fit_mle$lp()

fit_vb <- cmdstanr_example("logistic”, method = "variational”)
plot(fit_vb$lp(), fit_vb$lp_approx())

End(Not run)

fit-method-metadata Extract metadata from CmdStan CSV files

Description

The $metadata() method returns a list of information gathered from the CSV output files, includ-
ing the CmdStan configuration used when fitting the model. See Examples and read_cmdstan_csv().

Usage

metadata()

https://mc-stan.org/docs/2_23/reference-manual/variable-transforms-chapter.html

fit-method-mle 45

See Also

CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanGQ

Examples

Not run:
fit_mcmc <- cmdstanr_example("logistic”, method = "sample")
str(fit_mcmc$metadata())

fit_mle <- cmdstanr_example(”logistic”, method = "optimize")
str(fit_mle$metadata())

fit_vb <- cmdstanr_example("logistic”, method = "variational”)
str(fit_vb$metadata())

End(Not run)

fit-method-mle Extract (penalized) maximum likelihood estimate after optimization

Description

The $mle() method is only available for CmdStanMLE objects. It returns the penalized maximum
likelihood estimate (posterior mode) as a numeric vector with one element per variable. The re-
turned vector does not include 1p__, the total log probability (target) accumulated in the model
block of the Stan program, which is available via the $1p() method and also included in the
$draws () method.

Usage

mle(variables = NULL)

Arguments
variables (character vector) The variables (parameters, transformed parameters, and gen-
erated quantities) to include. If NULL (the default) then all variables are in-
cluded.
Value

A numeric vector. See Examples.

See Also

CmdStanMLE

46 fit-method-num_chains

Examples

Not run:

fit <- cmdstanr_example(”logistic”, method = "optimize")
fit$mle("alpha”)

fit$mle("beta")

fit$mle("betal2]")

End(Not run)

fit-method-num_chains Extract number of chains after MCMC

Description

The $num_chains() method returns the number of MCMC chains.

Usage

num_chains()

Value

An integer.

See Also

CmdStanMCMC

Examples

Not run:
fit_mcmc <- cmdstanr_example(chains = 2)
fit_mcmc$num_chains()

End(Not run)

fit-method-output 47

fit-method-output Access console output

Description

For MCMC, the $output () method returns the stdout and stderr of all chains as a list of character
vectors if 1id=NULL. If the id argument is specified it instead pretty prints the console output for a
single chain.

For optimization and variational inference $output () just pretty prints the console output.

Usage

output(id = NULL)

Arguments

id (integer) The chain id. Ignored if the model was not fit using MCMC.

See Also

CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanGQ

Examples

Not run:

fit_mcmc <- cmdstanr_example("logistic”, method = "sample")
fit_mcmc$output(1)

out <- fit_mcmc$output()

str(out)

fit_mle <- cmdstanr_example(”logistic”, method = "optimize")
fit_mle$output()

fit_vb <- cmdstanr_example("logistic”, method = "variational”)
fit_vb$output()

End(Not run)

48 fit-method-profiles

fit-method-profiles Return profiling data

Description

The $profiles() method returns a list of data frames with profiling data if any profiling data was
written to the profile CSV files. See save_profile_files() to control where the files are saved.

Support for profiling Stan programs is available with CmdStan >=2.26 and requires adding profiling
statements to the Stan program.

Usage
profiles()

Value

A list of data frames with profiling data if the profiling CSV files were created.

See Also

CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanGQ

Examples

Not run:
first fit a model using MCMC
mcmc_program <- write_stan_file(
'data {
int<lower=0> N;
array[N] int<lower=0,upper=1>y;
}
parameters {
real<lower=0,upper=1> theta;
}
model {
profile(”likelihood") {
y ~ bernoulli(theta);
3
}
generated quantities {
array[N] int y_rep;
profile("gq") {
y_rep = bernoulli_rng(rep_vector(theta, N));
3
}

)

mod_mcmc <- cmdstan_model (mcmc_program)

fit-method-return_codes 49

data <- list(N =10, y = c(1,1,0,0,0,1,0,1,0,0))
fit <- mod_mcmc$sample(data = data, seed = 123, refresh = 0)

fit$profiles()

End(Not run)

fit-method-return_codes
Extract return codes from CmdStan

Description
The $return_codes () method returns a vector of return codes from the CmdStan run(s). A return
code of 0 indicates a successful run.

Usage

return_codes()

Value
An integer vector of return codes with length equal to the number of CmdStan runs (number of
chains for MCMC and one otherwise).

See Also

CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanGQ

Examples
Not run:
example with return codes all zero
fit_mcmc <- cmdstanr_example(”schools”, method = "sample")

fit_mcmc$return_codes() # should be all zero
example of non-zero return code (optimization fails for hierarchical model)
fit_opt <- cmdstanr_example(”schools”, method = "optimize")

fit_opt$return_codes() # should be non-zero

End(Not run)

50 fit-method-sampler._diagnostics

fit-method-sampler_diagnostics
Extract sampler diagnostics after MCMC

Description

Extract the values of sampler diagnostics for each iteration and chain of MCMC. To instead get
summaries of these diagnostics and associated warning messages use the $diagnostic_summary()
method.

Usage

sampler_diagnostics(
inc_warmup = FALSE,

format = getOption("cmdstanr_draws_format”, "draws_array”)
)
Arguments
inc_warmup (logical) Should warmup draws be included? Defaults to FALSE.
format (string) The draws format to return. See draws for details.
Value

Depends on format, but the default is a 3-D draws_array object (iteration x chain x variable). The

non non n

variables for Stan’s default MCMC algorithm are "accept_stat__", "stepsize__", "treedepth__",

non n o n

"n_leapfrog__", "divergent__", "energy__".

See Also

CmdStanMCMC

Examples

Not run:

fit <- cmdstanr_example("logistic")
sampler_diagnostics <- fit$sampler_diagnostics()
str(sampler_diagnostics)

library(posterior)
as_draws_df (sampler_diagnostics)

or specify format to get a data frame instead of calling as_draws_df
fit$sampler_diagnostics(format = "df")

End(Not run)

fit-method-save_object 51

fit-method-save_object
Save fitted model object to a file

Description

This method is a wrapper around base: : saveRDS() that ensures that all posterior draws and diag-
nostics are saved when saving a fitted model object. Because the contents of the CmdStan output
CSV files are only read into R lazily (i.e., as needed), the $save_object() method is the safest
way to guarantee that everything has been read in before saving.

Usage
save_object(file, ...)
Arguments
file (string) Path where the file should be saved.
Other arguments to pass to base: : saveRDS() besides object and file.
See Also

CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanGQ

Examples

Not run:
fit <- cmdstanr_example("logistic")

temp_rds_file <- tempfile(fileext = ".RDS")
fit$save_object(file = temp_rds_file)
rm(fit)

fit <- readRDS(temp_rds_file)
fit$summary()

End(Not run)

52

fit-method-save_output_files

fit-method-save_output_files
Save output and data files

Description

All fitted model objects have methods for saving (moving to a specified location) the files created
by CmdStanR to hold CmdStan output csv files and input data files. These methods move the files
from their current location (possibly the temporary directory) to a user-specified location. The
paths stored in the fitted model object will also be updated to point to the new file locations.

The versions without the save_ prefix (e.g., $output_files()) return the current file paths without
moving any files.

Usage

save_output_files(dir = ".", basename = NULL, timestamp = TRUE, random = TRUE)
save_latent_dynamics_files(

dir = ".",

basename = NULL,

timestamp = TRUE,

random = TRUE
)
save_profile_files(dir = ".", basename = NULL, timestamp = TRUE, random = TRUE)
save_data_file(dir = ".", basename = NULL, timestamp = TRUE, random = TRUE)
save_config_files(dir = ".", basename = NULL, timestamp = TRUE, random = TRUE)
save_metric_files(dir = ".", basename = NULL, timestamp = TRUE, random = TRUE)

output_files(include_failed = FALSE)

profile_files(include_failed = FALSE)

latent_dynamics_files(include_failed = FALSE)

data_file()

config_files(include_failed

metric_files(include_failed

Arguments

dir

FALSE)

FALSE)

(string) Path to directory where the files should be saved.

fit-method-save_output_files 53

basename (string) Base filename to use. See Details.

timestamp (logical) Should a timestamp be added to the file name(s)? Defaults to TRUE.
See Details.

random (logical) Should random alphanumeric characters be added to the end of the file

name(s)? Defaults to TRUE. See Details.

include_failed (logical) Should CmdStan runs that failed also be included? The default is
FALSE.

Value

The $save_* methods print a message with the new file paths and (invisibly) return a character
vector of the new paths (or NA for any that couldn’t be copied). They also have the side effect of
setting the internal paths in the fitted model object to the new paths.

The methods without the save_ prefix return character vectors of file paths without moving any
files.

Details

For $save_output_files() the files moved to dir will have names of the form basename-timestamp-id-random,
where
* basename is the user’s provided basename argument;
e timestamp is of the form format(Sys.time(), "%Y%m%d%H%M");
¢ idis the MCMC chain id (or 1 for non MCMC);
* random contains six random alphanumeric characters;
For $save_latent_dynamics_files() everything is the same as for $save_output_files() ex-
cept "-diagnostic-" is included in the new file name after basename.

For $save_profile_files() everything is the same as for $save_output_files() except "-profile-"
is included in the new file name after basename.

For $save_metric_files() everything is the same as for $save_output_files() except "-metric-"
is included in the new file name after basename.

For $save_config_files() everything is the same as for $save_output_files() except "-config-"
is included in the new file name after basename.

For $save_data_file() no id is included in the file name because even with multiple MCMC
chains the data file is the same.

See Also
CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanGQ

Examples

Not run:

fit <- cmdstanr_example()
fit$output_files()
fit$data_file()

54 fit-method-summary

just using tempdir for the example

my_dir <- tempdir()

fit$save_output_files(dir = my_dir, basename = "banana")

fit$save_output_files(dir = my_dir, basename = "tomato”, timestamp = FALSE)
fit$save_output_files(dir = my_dir, basename = "lettuce”, timestamp = FALSE, random = FALSE)

End(Not run)

fit-method-summary Compute a summary table of estimates and diagnostics

Description

The $summary() method runs summarise_draws() from the posterior package and returns the
output. For MCMC, only post-warmup draws are included in the summary.

There is also a $print () method that prints the same summary stats but removes the extra format-
ting used for printing tibbles and returns the fitted model object itself. The $print () method may
also be faster than $summary () because it is designed to only compute the summary statistics for
the variables that will actually fit in the printed output whereas $summary () will compute them for
all of the specified variables in order to be able to return them to the user. See Examples.

Usage
summary(variables = NULL, ...)
Arguments
variables (character vector) The variables to include.
Optional arguments to pass to posterior: :summarise_draws().
Value

The $summary () method returns the tibble data frame created by posterior: :summarise_draws().

The $print () method returns the fitted model object itself (invisibly), which is the standard behav-
ior for print methods in R.

See Also

CmdStanMCMC, CmdStanMLE, CmdStanLaplace, CmdStanVB, CmdStanGQ

fit-method-time 55

Examples

Not run:

fit <- cmdstanr_example(”logistic”)

fit$summary()

fit$print()

fit$print(max_rows = 2) # same as print(fit, max_rows = 2)

include only certain variables
fit$summary("beta"”)
fit$print(c("alpha”, "betal[2]1"))

include all variables but only certain summaries
fit$summary(NULL, c("mean”, "sd"))

can use functions created from formulas
for example, calculate Pr(beta > @)
fit$summary("beta”, prob_gt_0 = ~ mean(. > 0))

can combine user-specified functions with
the default summary functions

fit$summary(variables = c("alpha”, "beta"),
posterior::default_summary_measures()[1:4],
quantiles = ~ quantile2(., probs = c(0.025, 0.975)),
posterior::default_convergence_measures()
)

the functions need to calculate the appropriate
value for a matrix input
fit$summary(variables = "alpha”, dim)

the usual [stats::var()] is therefore not directly suitable as it

will produce a covariance matrix unless the data is converted to a vector
fit$print(c("alpha”, "beta"), var2 = ~var(as.vector(.x)))

End(Not run)

fit-method-time Report timing of CmdStan runs

Description

Report the run time in seconds. For MCMC additional information is provided about the run times
of individual chains and the warmup and sampling phases. For Laplace approximation the time
only include the time for drawing the approximate sample and does not include the time taken to
run the $optimize () method.

Usage

time()

56 fit-method-unconstrain_draws

Value

A list with elements
* total: (scalar) The total run time. For MCMC this may be different than the sum of the chain
run times if parallelization was used.

* chains: (data frame) For MCMC only, timing info for the individual chains. The data frame

n on

has columns "chain_id", "warmup”, "sampling”, and "total".

See Also

CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanGQ

Examples

Not run:
fit_mcmc <- cmdstanr_example("logistic”, method = "sample")
fit_memc$time()

fit_vb <- cmdstanr_example("logistic”, method = "variational”)
fit_vb$time()

fit_mle <- cmdstanr_example(”logistic”, method = "optimize", jacobian = TRUE)
fit_mle$time()

use fit_mle to draw samples from laplace approximation

fit_laplace <- cmdstanr_example("logistic”, method = "laplace”, mode = fit_mle)
fit_laplace$time() # just time for drawing sample not for running optimize
fit_laplace$time()$total + fit_mle$time()$total # total time

End(Not run)

fit-method-unconstrain_draws
Transform all parameter draws to the unconstrained scale

Description

The $unconstrain_draws() method transforms all parameter draws to the unconstrained scale.
The method returns a list for each chain, containing the parameter values from each iteration on the
unconstrained scale. If called with no arguments, then the draws within the fit object are uncon-
strained. Alternatively, either an existing draws object or a character vector of paths to CSV files
can be passed.

fit-method-unconstrain_variables 57

Usage
unconstrain_draws(
files = NULL,
draws = NULL,
format = getOption("cmdstanr_draws_format”, "draws_array”),
inc_warmup = FALSE
)
Arguments
files (character vector) The paths to the CmdStan CSV files. These can be files gen-
erated by running CmdStanR or running CmdStan directly.
draws A posterior: :draws_% object.
format (string) The format of the returned draws. Must be a valid format from the
posterior package.
inc_warmup (logical) Should warmup draws be included? Defaults to FALSE.
See Also

log_prob(), grad_log_prob(), constrain_variables(), unconstrain_variables(),unconstrain_draws(),
variable_skeleton(), hessian()

Examples

Not run:
fit_mcmc <- cmdstanr_example(”logistic”, method = "sample”, force_recompile = TRUE)

Unconstrain all internal draws
unconstrained_internal_draws <- fit_mcmc$unconstrain_draws()

Unconstrain external CmdStan CSV files
unconstrained_csv <- fit_mcmc$unconstrain_draws(files = fit_mcmc$output_files())

Unconstrain existing draws object
unconstrained_draws <- fit_mcmc$unconstrain_draws(draws = fit_mcmc$draws())

End(Not run)

fit-method-unconstrain_variables
Transform a set of parameter values to the unconstrained scale

Description

The $unconstrain_variables() method transforms input parameters to the unconstrained scale.

58 fit-method-variable_skeleton

Usage

unconstrain_variables(variables)

Arguments
variables (list) A list of parameter values to transform, in the same format as provided to
the init argument of the $sample () method.
See Also

log_prob(), grad_log_prob(), constrain_variables(),unconstrain_variables(), unconstrain_draws(),
variable_skeleton(), hessian()

Examples

Not run:
fit_mcmc <- cmdstanr_example("logistic”, method = "sample”, force_recompile = TRUE)
fit_mcmc$unconstrain_variables(list(alpha = 0.5, beta = c(0.7, 1.1, 0.2)))

End(Not run)

fit-method-variable_skeleton
Return the variable skeleton for relist

Description

The $variable_skeleton() method returns the variable skeleton needed by utils::relist() to
re-structure a vector of constrained parameter values to a named list.

Usage

variable_skeleton(transformed_parameters = TRUE, generated_quantities = TRUE)

Arguments

transformed_parameters

(logical) Whether to include transformed parameters in the skeleton (defaults to
TRUE).

generated_quantities

(logical) Whether to include generated quantities in the skeleton (defaults to
TRUE).

See Also

log_prob(), grad_log_prob(), constrain_variables(), unconstrain_variables(), unconstrain_draws(),
variable_skeleton(), hessian()

install_cmdstan 59

Examples

Not run:
fit_mcmc <- cmdstanr_example(”logistic”, method = "sample”, force_recompile = TRUE)
fit_mcmc$variable_skeleton()

End(Not run)

install_cmdstan Install CmdStan or clean and rebuild an existing installation

Description

The install_cmdstan() function attempts to download and install the latest release of CmdStan.
Installing a previous release or a new release candidate is also possible by specifying the version
or release_url argument. See the first few sections of the CmdStan installation guide for details
on the C++ toolchain required for installing CmdStan.

The rebuild_cmdstan() function cleans and rebuilds the CmdStan installation. Use this function
in case of any issues when compiling models.

The cmdstan_make_local() function is used to read/write makefile flags and variables from/to
the make/local file of a CmdStan installation. Writing to the make/local file can be used to
permanently add makefile flags/variables to an installation. For example adding specific compiler
switches, changing the C++ compiler, etc. A change to the make/local file should typically be
followed by calling rebuild_cmdstan().

The check_cmdstan_toolchain() function attempts to check for the required C++ toolchain. It is
called internally by install_cmdstan() but can also be called directly by the user.

Usage

install_cmdstan(
dir = NULL,
cores = getOption("mc.cores”, 2),
quiet = FALSE,
overwrite = FALSE,
timeout = 1200,
version = NULL,
release_url = NULL,
release_file = NULL,
cpp_options = list(),
check_toolchain = TRUE,
wsl = FALSE

)

rebuild_cmdstan(
dir = cmdstan_path(),
cores = getOption("mc.cores"”, 2),

https://github.com/stan-dev/cmdstan/releases/latest
https://mc-stan.org/docs/cmdstan-guide/cmdstan-installation.html

60 install cmdstan

quiet = FALSE,
timeout = 600
)

cmdstan_make_local(dir = cmdstan_path(), cpp_options = NULL, append = TRUE)

check_cmdstan_toolchain(fix = FALSE, quiet = FALSE)

Arguments

dir (string) The path to the directory in which to install CmdStan. The default is
to install it in a directory called . cmdstan within the user’s home directory (i.e,
file.path(Sys.getenv("HOME"), ".cmdstan")).

cores (integer) The number of CPU cores to use to parallelize building CmdStan and
speed up installation. If cores is not specified then the default is to look for the
option "mc. cores”, which can be set for an entire R session by options(mc.cores=value).
If the "mc. cores” option has not been set then the default is 2.

quiet (logical) For install_cmdstan(), should the verbose output from the system
processes be suppressed when building the CmdStan binaries? The default is
FALSE. For check_cmdstan_toolchain(), should the function suppress print-
ing informational messages? The default is FALSE. If TRUE only errors will be
printed.

overwrite (logical) Should CmdStan still be downloaded and installed even if an installa-
tion of the same version is found in dir? The default is FALSE, in which case an
informative error is thrown instead of overwriting the user’s installation.

timeout (positive real) Timeout (in seconds) for the build stage of the installation.

version (string) The CmdStan release version to install. The default is NULL, which
downloads the latest stable release from https://github.com/stan-dev/cmdstan/
releases.

release_url (string) The URL for the specific CmdStan release or release candidate to install.

See https://github.com/stan-dev/cmdstan/releases. The URL should
point to the tarball (. tar.gz. file) itself, e.g., release_url="https://github.com/stan-dev/cmdstar
If both version and release_url are specified then version will be used.

release_file (string) A file path to a CmdStan release tar.gz file downloaded from the re-
leases page: https://github.com/stan-dev/cmdstan/releases. For ex-
ample: release_file=""./cmdstan-2.33.1.tar.gz". If release_file is
specified then both release_url and version will be ignored.

cpp_options (list) Any makefile flags/variables to be written to the make/local file. For
example, 1ist ("CXX" = "clang++") will force the use of clang for compilation.

check_toolchain
(logical) Should install_cmdstan() attempt to check that the required toolchain
is installed and properly configured. The default is TRUE.

wsl (logical) Should CmdStan be installed and run through the Windows Subsystem
for Linux (WSL). The default is FALSE.
append (logical) For cmdstan_make_local(), should the listed makefile flags be ap-

pended to the end of the existing make/local file? The default is TRUE. If FALSE
the file is overwritten.

https://github.com/stan-dev/cmdstan/releases
https://github.com/stan-dev/cmdstan/releases
https://github.com/stan-dev/cmdstan/releases
https://github.com/stan-dev/cmdstan/releases

model-method-check_syntax 61

fix For check_cmdstan_toolchain(), should CmdStanR attempt to fix any de-
tected toolchain problems? Currently this option is only available on Windows.
The default is FALSE, in which case problems are only reported along with sug-
gested fixes.

Value

For cmdstan_make_local(), if cpp_options=NULL then the existing contents of make/local are
returned without writing anything, otherwise the updated contents are returned.

Examples

Not run:
check_cmdstan_toolchain()

install_cmdstan(cores = 4)

cpp_options <- list(
"CXX" = "clang++",
"CXXFLAGS+= -march=native”,
PRECOMPILED_HEADERS = TRUE
)
cmdstan_make_local (cpp_options = cpp_options)
rebuild_cmdstan()

End(Not run)

model-method-check_syntax
Check syntax of a Stan program

Description

The $check_syntax () method of a CmdStanModel object checks the Stan program for syntax errors
and returns TRUE (invisibly) if parsing succeeds. If invalid syntax in found an error is thrown.

Usage

check_syntax(
pedantic = FALSE,
include_paths = NULL,
stanc_options = list(),
quiet = FALSE

62 model-method-check_syntax

Arguments

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

stanc_options (list) Any other Stan-to-C++ transpiler options to be used when compiling the
model. See the documentation for the $compile() method for details.

quiet (logical) Should informational messages be suppressed? The default is FALSE,
which will print a message if the Stan program is valid or the compiler error mes-
sage if there are syntax errors. If TRUE, only the error message will be printed.

Value

The $check_syntax () method returns TRUE (invisibly) if the model is valid.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-compile, model-method-diagnose, model-method-expose_functions,
model-method-format, model-method-generate-quantities, model-method-laplace, model-method-optimize,
model-method-pathfinder, model-method-sample, model-method-sample_mpi, model-method-variables,
model-method-variational

Examples
Not run:
file <- write_stan_file(”
data {
int N;
array[N] int y;
3

parameters {
// should have <lower=0> but omitting to demonstrate pedantic mode
real lambda;

3
model {
y ~ poisson(lambda);
3
)

mod <- cmdstan_model(file, compile = FALSE)

the program is syntactically correct, however...

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

model-method-compile 63

mod$check_syntax()
pedantic mode will warn that lambda should be constrained to be positive
and that lambda has no prior distribution

mod$check_syntax(pedantic = TRUE)

End(Not run)

model-method-compile Compile a Stan program

Description

The $compile() method of a CmdStanModel object checks the syntax of the Stan program, trans-
lates the program to C++, and creates a compiled executable. To just check the syntax of a Stan
program without compiling it use the $check_syntax () method instead.

In most cases the user does not need to explicitly call the $compile () method as compilation will
occur when calling cmdstan_model (). However it is possible to set compile=FALSE in the call to
cmdstan_model () and subsequently call the $compile () method directly.

After compilation, the paths to the executable and the . hpp file containing the generated C++ code
are available via the $exe_file() and $hpp_file() methods. The default is to create the exe-
cutable in the same directory as the Stan program and to write the generated C++ code in a tempo-
rary directory. To save the C++ code to a non-temporary location use $save_hpp_file(dir).

Usage
compile(
quiet = TRUE,
dir = NULL,

pedantic = FALSE,

include_paths = NULL,
user_header = NULL,

cpp_options = list(),
stanc_options = list(),
force_recompile = getOption("cmdstanr_force_recompile”, default = FALSE),
compile_model_methods = FALSE,
compile_standalone = FALSE,
dry_run = FALSE,
compile_hessian_method = FALSE,
threads = FALSE

Arguments

quiet (logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

64 model-method-compile

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

user_header (string) The path to a C++ file (with a .hpp extension) to compile with the Stan
model.

cpp_options (list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last
compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

compile_model_methods
(logical) Compile additional model methods (log_prob(), grad_log_prob(),
constrain_variables(), unconstrain_variables()).

compile_standalone
(logical) Should functions in the Stan model be compiled for use in R? If TRUE
the functions will be available via the functions field in the compiled model ob-
ject. This can also be done after compilation using the $expose_functions()
method.

dry_run (logical) If TRUE, the code will do all checks before compilation, but skip the
actual C++ compilation. Used to speedup tests.

compile_hessian_method
(logical) Should the (experimental) hessian() method be be compiled with the
model methods?

threads Deprecated and will be removed in a future release. Please turn on threading via
cpp_options = list(stan_threads = TRUE) instead.

Value
The $compile() method is called for its side effect of creating the executable and adding its path
to the CmdStanModel object, but it also returns the CmdStanModel object invisibly.

After compilation, the $exe_file(), $hpp_file(), and $save_hpp_file() methods can be used
and return file paths.

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

model-method-diagnose 65

See Also

The $check_syntax () method to check Stan syntax or enable pedantic model without compiling.
The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-check_syntax, model-method-diagnose, model-method-expose_funct:
model-method-format, model-method-generate-quantities, model-method-laplace, model-method-optimize,
model-method-pathfinder, model-method-sample, model-method-sample_mpi, model-method-variables,
model-method-variational

Examples

Not run:
file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")

by default compilation happens when cmdstan_model() is called.

to delay compilation until calling the $compile() method set compile=FALSE
mod <- cmdstan_model(file, compile = FALSE)

mod$compile()

mod$exe_file()

turn on threading support (for using functions that support within-chain parallelization)
mod$compile(force_recompile = TRUE, cpp_options = list(stan_threads = TRUE))
mod$exe_file()

turn on pedantic mode (new in Stan v2.24)
file_pedantic <- write_stan_file("
parameters {
real sigma; // pedantic mode will warn about missing <lower=0>
3
model {
sigma ~ exponential(1);
3
")
mod <- cmdstan_model(file_pedantic, pedantic = TRUE)

End(Not run)

model-method-diagnose Run Stan’s diagnose method

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

66 model-method-diagnose

Description

The $diagnose() method of a CmdStanModel object runs Stan’s basic diagnostic feature that will
calculate the gradients of the initial state and compare them with gradients calculated by finite
differences. Discrepancies between the two indicate that there is a problem with the model or initial
states or else there is a bug in Stan.

Usage
diagnose(
data = NULL,
seed = NULL,
init = NULL,

output_dir = getOption("cmdstanr_output_dir"),
output_basename = NULL,

epsilon = NULL,

error = NULL

Arguments

data (multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

init (multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0@. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;
* The number @. This initializes all parameters to ;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

model-method-diagnose 67

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

¢ A CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanPathfinder, or CmdStanLaplace
fit object. If the fit object’s parameters are only a subset of the model
parameters then the other parameters will be drawn by Stan’s default ini-
tialization. The fit object must have at least some parameters that are the
same name and dimensions as the current Stan model. For the sample and
pathfinder method, if the fit object has fewer draws than the requested
number of chains/paths then the inits will be drawn using sampling with
replacement. Otherwise sampling without replacement will be used. When
a CmdStanPathfinder fit object is used as the init, if . psis_resample
was set to FALSE and calculate_1p was set to TRUE (default), then resam-
pling without replacement with Pareto smoothed weights will be used. If
psis_resample was set to TRUE or calculate_lp was set to FALSE then
sampling without replacement with uniform weights will be used to select
the draws. PSIS resampling is used to select the draws for CmdStanVB, and
CmdStanLaplace fit objects.

e A type inheriting from posterior: :draws. If the draws object has less
samples than the number of requested chains/paths then the inits will be
drawn using sampling with replacement. Otherwise sampling without re-
placement will be used. If the draws object’s parameters are only a subset
of the model parameters then the other parameters will be drawn by Stan’s
default initialization. The fit object must have at least some parameters that
are the same name and dimensions as the current Stan model.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For MCMC there will be one file per chain; for other methods there will be
a single file. For interactive use this can typically be left at NULL (temporary
directory) since CmdStanR makes the CmdStan output (posterior draws and di-
agnostics) available in R via methods of the fitted model objects. This can be set
for an entire R session using options(cmdstanr_output_dir). The behavior
of output_dir is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

output_basename
(string) A string to use as a prefix for the names of the output CSV files of

68 model-method-expose_functions

CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

epsilon (positive real) The finite difference step size. Default value is 1e-6.
error (positive real) The error threshold. Default value is 1e-6.
Value

A CmdStanDiagnose object.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide
Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-expose_functic
model-method-format, model-method-generate-quantities, model-method-laplace, model-method-optimize,

model-method-pathfinder, model-method-sample, model-method-sample_mpi, model-method-variables,
model-method-variational

Examples

Not run:
test <- cmdstanr_example("”logistic”, method = "diagnose”)

retrieve the gradients
test$gradients()

End(Not run)

model-method-expose_functions
Expose Stan functions to R

Description

The $expose_functions() method of a CmdStanModel object will compile the functions in the
Stan program’s functions block and expose them for use in R. This can also be specified via the
compile_standalone argument to the $compile () method.

This method is also available for fitted model objects (CmdStanMCMC, CmdStanVB, etc.). See Exam-
ples.

Note: there may be many compiler warnings emitted during compilation but these can be ignored
so long as they are warnings and not errors.

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

model-method-expose_functions 69

Usage

expose_functions(global = FALSE, verbose = FALSE)

Arguments
global (logical) Should the functions be added to the Global Environment? The default
is FALSE, in which case the functions are available via the functions field of
the R6 object.
verbose (logical) Should detailed information about generated code be printed to the
console? Defaults to FALSE.
See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-format, model-method-generate-quantities, model-method-laplace, model-method-optimize,
model-method-pathfinder, model-method-sample, model-method-sample_mpi, model-method-variables,
model-method-variational

Examples

Not run:
stan_file <- write_stan_file(
functions {
real a_plus_b(real a, real b) {
return a + b;
}
3
parameters {
real x;
3
model {
x ~ std_normal();
}

n

)

mod <- cmdstan_model(stan_file)
mod$expose_functions()
mod$functions$a_plus_b(1, 2)

fit <- mod$sample(refresh = @)
fit$expose_functions() # already compiled because of above but this would compile them otherwise
fit$functions$a_plus_b(1, 2)

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

70 model-method-format

End(Not run)

model-method-format Run stanc’s auto-formatter on the model code.

Description

The $format () method of a CmdStanModel object runs stanc’s auto-formatter on the model code.
Either saves the formatted model directly back to the file or prints it for inspection.

Usage

format(
overwrite_file = FALSE,
canonicalize = FALSE,
backup = TRUE,
max_line_length = NULL,
quiet = FALSE

Arguments

overwrite_file (logical) Should the formatted code be written back to the input model file. The
default is FALSE.

canonicalize (list or logical) Defines whether or not the compiler should ’canonicalize’ the
Stan model, removing things like deprecated syntax. Default is FALSE. If TRUE,
all canonicalizations are run. You can also supply a list of strings which repre-
sent options. In that case the options are passed to stanc (new in Stan 2.29). See
the User’s guide section for available canonicalization options.

backup (logical) If TRUE, create stanfile.bak backups before writing to the file. Dis-
able this option if you’re sure you have other copies of the file or are using
a version control system like Git. Defaults to TRUE. The value is ignored if
overwrite_file = FALSE.

max_line_length
(integer) The maximum length of a line when formatting. The default is NULL,
which defers to the default line length of stanc.

quiet (logical) Should informational messages be suppressed? The default is FALSE.

Value

The $format() method returns TRUE (invisibly) if the model is valid.

https://mc-stan.org/docs/stan-users-guide/stanc-pretty-printing.html#canonicalizing

model-method-format 71

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-expose_functions, model-method-generate-quantities, model-method-laplace,
model-method-optimize, model-method-pathfinder, model-method-sample, model-method-sample_mpi,
model-method-variables, model-method-variational

Examples

Not run:

Example of fixing old syntax
real x[2] --> array[2] real x;
file <- write_stan_file("
parameters {

real x[2];
3
model {

x ~ std_normal();

}
n)

set compile=FALSE then call format to fix old syntax
mod <- cmdstan_model(file, compile = FALSE)
mod$format(canonicalize = list("deprecations™))

overwrite the original file instead of just printing it
mod$format(canonicalize = list("deprecations”), overwrite_file = TRUE)
mod$compile()

Example of removing unnecessary whitespace
file <- write_stan_file("
data {
int N;
array[N] int y;
3
parameters {
real lambda;
3
model {
target +=
poisson_lpmf(y | lambda);
}
")
mod <- cmdstan_model(file, compile = FALSE)

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

72 model-method-generate-quantities

mod$format(canonicalize = TRUE)

End(Not run)

model-method-generate-quantities
Run Stan’s standalone generated quantities method

Description

The $generate_quantities() method of a CmdStanModel object runs Stan’s standalone generated
quantities to obtain generated quantities based on previously fitted parameters.

Usage

generate_quantities(
fitted_params,
data = NULL,
seed = NULL,
output_dir = getOption("cmdstanr_output_dir"),
output_basename = NULL,
sig_figs = NULL,
parallel_chains = getOption("mc.cores”, 1),
threads_per_chain = NULL,
opencl_ids = NULL

Arguments

fitted_params (multiple options) The parameter draws to use. One of the following:

* A CmdStanMCMC or CmdStanVB fitted model object.

* A posterior::draws_array (for MCMC) or posterior::draws_matrix (for VB)
object returned by CmdStanR’s $draws () method.

* A character vector of paths to CmdStan CSV output files.

NOTE: if you plan on making many calls to $generate_quantities() then
the most efficient option is to pass the paths of the CmdStan CSV output files
(this avoids CmdStanR having to rewrite the draws contained in the fitted model
object to CSV each time). If you no longer have the CSV files you can use
draws_to_csv() once to write them and then pass the resulting file paths to
$generate_quantities() as many times as needed.

data (multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

model-method-generate-quantities 73

» A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For MCMC there will be one file per chain; for other methods there will be
a single file. For interactive use this can typically be left at NULL (temporary
directory) since CmdStanR makes the CmdStan output (posterior draws and di-
agnostics) available in R via methods of the fitted model objects. This can be set
for an entire R session using options(cmdstanr_output_dir). The behavior
of output_dir is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.
parallel_chains
(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
"mc. cores”, which can be set for an entire R session by options(mc.cores=value).
If the "mc. cores” option has not been set then the default is 1.
threads_per_chain
(positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections within an MCMC chain (e.g., when

74 model-method-generate-quantities

using the Stan functions reduce_sum() or map_rect()). This is in contrast with
parallel_chains, which specifies the number of chains to run in parallel. The
actual number of CPU cores used is parallel_chains*threads_per_chain.
For an example of using threading see the Stan case study Reduce Sum: A
Minimal Example.

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

Value

A CmdStanGQ object.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

¢ Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-expose_functions, model-method-format, model-method-laplace, model-method-optimize,
model-method-pathfinder, model-method-sample, model-method-sample_mpi, model-method-variables,
model-method-variational

Examples

Not run:
first fit a model using MCMC
mcmc_program <- write_stan_file(
"data {
int<lower=0> N;
array[N] int<lower=0,upper=1>y;
}
parameters {
real<lower=0,upper=1> theta;

}
model {

y ~ bernoulli(theta);
}II

)

mod_mcmc <- cmdstan_model (mcmc_program)

data <- list(N = 10, y = ¢(1,1,0,0,0,1,0,1,0,0))
fit_memc <- mod_mcmc$sample(data = data, seed = 123, refresh = 0)

stan program for standalone generated quantities
(could keep model block, but not necessary so removing it)
gg_program <- write_stan_file(

"data {

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

model-method-laplace 75

int<lower=0> N;
array[N] int<lower=0,upper=1> y;
}
parameters {
real<lower=0,upper=1> theta;
}
generated quantities {
array[N] int y_rep = bernoulli_rng(rep_vector(theta, N));
G
)
mod_gqg <- cmdstan_model(gq_program)
fit_gg <- mod_gg$generate_quantities(fit_mcmc, data = data, seed = 123)
str(fit_gg$draws())

library(posterior)
as_draws_df (fit_gq$draws())

End(Not run)

model-method-laplace Run Stan’s Laplace algorithm

Description

The $laplace() method of a CmdStanModel object produces a sample from a normal approxima-
tion centered at the mode of a distribution in the unconstrained space. If the mode is a maximum
a posteriori (MAP) estimate, the samples provide an estimate of the mean and standard deviation
of the posterior distribution. If the mode is a maximum likelihood estimate (MLE), the sample
provides an estimate of the standard error of the likelihood. Whether the mode is the MAP or MLE
depends on the value of the jacobian argument when running optimization. See the CmdStan
User’s Guide for more details.

Any argument left as NULL will default to the default value used by the installed version of CmdStan.

Usage

laplace(
data = NULL,
seed = NULL,
refresh = NULL,
init = NULL,
save_latent_dynamics = FALSE,
output_dir = getOption("cmdstanr_output_dir"),
output_basename = NULL,
sig_figs = NULL,
threads = NULL,
opencl_ids = NULL,

https://mc-stan.org/docs/cmdstan-guide/
https://mc-stan.org/docs/cmdstan-guide/

76

mode = NULL,

model-method-laplace

opt_args = NULL,

jacobian

draws

show_messages

TRUE,

= TRUE,

show_exceptions = TRUE,
save_cmdstan_config = NULL

Arguments

data

seed

refresh

init

(multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

(non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

(multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

¢ A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

* The number 0. This initializes all parameters to 0;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no

model-method-laplace 77

arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.
¢ A CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanPathfinder, or CmdStanLaplace

fit object. If the fit object’s parameters are only a subset of the model
parameters then the other parameters will be drawn by Stan’s default ini-
tialization. The fit object must have at least some parameters that are the
same name and dimensions as the current Stan model. For the sample and
pathfinder method, if the fit object has fewer draws than the requested
number of chains/paths then the inits will be drawn using sampling with
replacement. Otherwise sampling without replacement will be used. When
a CmdStanPathfinder fit object is used as the init, if . psis_resample
was set to FALSE and calculate_1lp was set to TRUE (default), then resam-
pling without replacement with Pareto smoothed weights will be used. If
psis_resample was set to TRUE or calculate_lp was set to FALSE then
sampling without replacement with uniform weights will be used to select
the draws. PSIS resampling is used to select the draws for CmdStanVB, and
CmdStanLaplace fit objects.

* A type inheriting from posterior::draws. If the draws object has less
samples than the number of requested chains/paths then the inits will be
drawn using sampling with replacement. Otherwise sampling without re-
placement will be used. If the draws object’s parameters are only a subset
of the model parameters then the other parameters will be drawn by Stan’s
default initialization. The fit object must have at least some parameters that
are the same name and dimensions as the current Stan model.

save_latent_dynamics
Ignored for this method.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For MCMC there will be one file per chain; for other methods there will be
a single file. For interactive use this can typically be left at NULL (temporary
directory) since CmdStanR makes the CmdStan output (posterior draws and di-
agnostics) available in R via methods of the fitted model objects. This can be set
for an entire R session using options(cmdstanr_output_dir). The behavior
of output_dir is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant

78 model-method-laplace

figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

threads (positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections (e.g., when using the Stan functions
reduce_sum() or map_rect()).

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

mode (multiple options) The mode to center the approximation at. One of the follow-
ing:
* A CmdStanMLE object from a previous run of $optimize().
* The path to a CmdStan CSV file from running optimization.
* NULL, in which case $optimize() will be run with jacobian=jacobian (see

the jacobian argument below).

In all cases the total time reported by $time() will be the time of the Laplace
sampling step only and does not include the time taken to run the $optimize()

method.
opt_args (named list) A named list of optional arguments to pass to $optimize() if mode=NULL.
jacobian (logical) Whether or not to enable the Jacobian adjustment for constrained pa-

rameters. The default is TRUE. See the Laplace Sampling section of the CmdStan
User’s Guide for more details. If mode is not NULL then the value of jacobian
must match the value used when optimization was originally run. If mode is NULL
then the value of jacobian specified here is used when running optimization.

draws (positive integer) The number of draws to take.

show_messages (logical) When TRUE (the default), prints all output during the execution process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

show_exceptions
(logical) When TRUE (the default), prints all informational messages, for exam-
ple rejection of the current proposal. Disable if you wish to silence these mes-
sages, but this is not usually recommended unless you are very confident that
the model is correct up to numerical error. If the messages are silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

save_cmdstan_config
(logical) When TRUE (the default), call CmdStan with argument "output save_config=1"
to save a json file which contains the argument tree and extra information (equiv-

alent to the output CSV file header). This option is only available in CmdStan
2.34.0 and later.

Value

A CmdStanLaplace object.

https://mc-stan.org/docs/cmdstan-guide/laplace-sampling.html

model-method-optimize 79

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

» Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-expose_functions, model-method-format, model-method-generate-quantities,
model-method-optimize, model-method-pathfinder, model-method-sample, model-method-sample_mpi,
model-method-variables, model-method-variational

Examples

Not run:

file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")
mod <- cmdstan_model(file)

mod$print()

stan_data <- list(N =10, y = ¢c(0,1,0,0,0,0,0,0,0,1))
fit_mode <- mod$optimize(data = stan_data, jacobian = TRUE)
fit_laplace <- mod$laplace(data = stan_data, mode = fit_mode)
fit_laplace$summary()

if mode isn't specified optimize is run internally first
fit_laplace <- mod$laplace(data = stan_data)
fit_laplace$summary()

plot approximate posterior
bayesplot::mcmc_hist(fit_laplace$draws(”theta"))

End(Not run)

model-method-optimize Run Stan’s optimization algorithms

Description

The $optimize () method of a CmdStanModel object runs Stan’s optimizer to obtain a (penalized)
maximum likelihood estimate or a maximum a posteriori estimate (if jacobian=TRUE). See the
CmdStan User’s Guide for more details.

Any argument left as NULL will default to the default value used by the installed version of CmdStan.
See the CmdStan User’s Guide for more details on the default arguments. The default values can
also be obtained by checking the metadata of an example model, e.g., cmdstanr_example(method="optimize")$metadatal

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/
https://mc-stan.org/docs/cmdstan-guide/index.html
https://mc-stan.org/docs/cmdstan-guide/

80 model-method-optimize

Usage

optimize(
data = NULL,
seed = NULL,
refresh = NULL,
init = NULL,
save_latent_dynamics = FALSE,
output_dir = getOption("cmdstanr_output_dir"),
output_basename = NULL,
sig_figs = NULL,
threads = NULL,
opencl_ids = NULL,
algorithm = NULL,
jacobian = FALSE,
init_alpha = NULL,
iter = NULL,
tol_obj = NULL,
tol_rel_obj = NULL,
tol_grad = NULL,
tol_rel_grad = NULL,
tol_param = NULL,
history_size = NULL,
show_messages = TRUE,
show_exceptions = TRUE,
save_cmdstan_config = NULL

Arguments

data (multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

model-method-optimize 81

refresh (non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

init (multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

e The number 0. This initializes all parameters to 0;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

* A CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanPathfinder, or CmdStanLaplace
fit object. If the fit object’s parameters are only a subset of the model
parameters then the other parameters will be drawn by Stan’s default ini-
tialization. The fit object must have at least some parameters that are the
same name and dimensions as the current Stan model. For the sample and
pathfinder method, if the fit object has fewer draws than the requested
number of chains/paths then the inits will be drawn using sampling with
replacement. Otherwise sampling without replacement will be used. When
a CmdStanPathfinder fit object is used as the init, if . psis_resample
was set to FALSE and calculate_1lp was set to TRUE (default), then resam-
pling without replacement with Pareto smoothed weights will be used. If
psis_resample was set to TRUE or calculate_lp was set to FALSE then
sampling without replacement with uniform weights will be used to select
the draws. PSIS resampling is used to select the draws for CmdStanVB, and
CmdStanLaplace fit objects.

* A type inheriting from posterior::draws. If the draws object has less
samples than the number of requested chains/paths then the inits will be
drawn using sampling with replacement. Otherwise sampling without re-
placement will be used. If the draws object’s parameters are only a subset
of the model parameters then the other parameters will be drawn by Stan’s
default initialization. The fit object must have at least some parameters that
are the same name and dimensions as the current Stan model.

save_latent_dynamics
(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content

model-method-optimize

may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For MCMC there will be one file per chain; for other methods there will be
a single file. For interactive use this can typically be left at NULL (temporary
directory) since CmdStanR makes the CmdStan output (posterior draws and di-
agnostics) available in R via methods of the fitted model objects. This can be set
for an entire R session using options(cmdstanr_output_dir). The behavior
of output_dir is as follows:

* If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

threads (positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections (e.g., when using the Stan functions
reduce_sum() or map_rect()).

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

algorithm (string) The optimization algorithm. One of "1bfgs”, "bfgs”, or "newton”.
The control parameters below are only available for "1bfgs” and "bfgs. For
their default values and more details see the CmdStan User’s Guide. The default
values can also be obtained by running cmdstanr_example(method="optimize")$metadata().

jacobian (logical) Whether or not to use the Jacobian adjustment for constrained vari-
ables. For historical reasons, the default is FALSE, meaning optimization yields
the (regularized) maximum likelihood estimate. Setting it to TRUE yields the
maximum a posteriori estimate. See the Maximum Likelihood Estimation sec-
tion of the CmdStan User’s Guide for more details. For use later with $1aplace()
the jacobian argument should typically be set to TRUE.

init_alpha (positive real) The initial step size parameter.

iter (positive integer) The maximum number of iterations.

tol_obj (positive real) Convergence tolerance on changes in objective function value.
tol_rel_obj (positive real) Convergence tolerance on relative changes in objective function

value.

https://mc-stan.org/docs/cmdstan-guide/maximum-likelihood-estimation.html

model-method-optimize 83

tol_grad (positive real) Convergence tolerance on the norm of the gradient.
tol_rel_grad (positive real) Convergence tolerance on the relative norm of the gradient.
tol_param (positive real) Convergence tolerance on changes in parameter value.

history_size (positive integer) The size of the history used when approximating the Hessian.
Only available for L-BFGS.

show_messages (logical) When TRUE (the default), prints all output during the execution process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

show_exceptions
(logical) When TRUE (the default), prints all informational messages, for exam-
ple rejection of the current proposal. Disable if you wish to silence these mes-
sages, but this is not usually recommended unless you are very confident that
the model is correct up to numerical error. If the messages are silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

save_cmdstan_config
(logical) When TRUE (the default), call CmdStan with argument "output save_config=1"
to save a json file which contains the argument tree and extra information (equiv-
alent to the output CSV file header). This option is only available in CmdStan
2.34.0 and later.

Value

A CmdStanMLE object.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-expose_functions, model-method-format, model-method-generate-quantities,
model-method-laplace, model-method-pathfinder, model-method-sample, model-method-sample_mpi,
model-method-variables, model-method-variational

Examples

Not run:

library(cmdstanr)
library(posterior)
library(bayesplot)
color_scheme_set("brightblue")

Set path to CmdStan

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

84

model-method-optimize

(Note: if you installed CmdStan via install_cmdstan() with default settings
then setting the path is unnecessary but the default below should still work.
Otherwise use the “path™ argument to specify the location of your

CmdStan installation.)

set_cmdstan_path(path = NULL)

Create a CmdStanModel object from a Stan program,

here using the example model that comes with CmdStan

file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")
mod <- cmdstan_model(file)

mod$print()

Print with line numbers. This can be set globally using the

~cmdstanr_print_line_numbers™ option.

mod$print(line_numbers = TRUE)

Data as a named list (like RStan)
stan_data <- list(N =10, y = c(0,1,0,0,0,0,0,0,0,1))

Run MCMC using the 'sample' method
fit_mcmc <- mod$sample(

data = stan_data,

seed = 123,

chains = 2,

parallel_chains = 2

)

Use 'posterior' package for summaries
fit_memc$summary ()

Check sampling diagnostics
fit_mcmc$diagnostic_summary()

Get posterior draws
draws <- fit_mcmc$draws()
print(draws)

Convert to data frame using posterior::as_draws_df
as_draws_df (draws)

Plot posterior using bayesplot (ggplot2)
mcmc_hist(fit_mcmc$draws(”theta"”))

For models fit using MCMC, if you like working with RStan's stanfit objects
then you can create one with rstan::read_stan_csv()
stanfit <- rstan::read_stan_csv(fit_mcmc$output_files())

Run 'optimize' method to get a point estimate (default is Stan's LBFGS algorithm)
and also demonstrate specifying data as a path to a file instead of a list
my_data_file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.data.json")
fit_optim <- mod$optimize(data = my_data_file, seed = 123)

fit_optim$summary ()

model-method-optimize

Run 'optimize' again with 'jacobian=TRUE' and then draw from Laplace approximation
to the posterior

fit_optim <- mod$optimize(data = my_data_file, jacobian = TRUE)

fit_laplace <- mod$laplace(data = my_data_file, mode = fit_optim, draws = 2000)
fit_laplace$summary()

Run 'variational' method to use ADVI to approximate posterior
fit_vb <- mod$variational(data = stan_data, seed = 123)
fit_vb$summary()

mcmc_hist(fit_vb$draws("theta"))

Run 'pathfinder' method, a new alternative to the variational method
fit_pf <- mod$pathfinder(data = stan_data, seed = 123)
fit_pf$summary()

mcmc_hist(fit_pf$draws(”theta”))

Run 'pathfinder' again with more paths, fewer draws per path,

better covariance approximation, and fewer LBFGSs iterations

fit_pf <- mod$pathfinder(data = stan_data, num_paths=10, single_path_draws=40,
history_size=50, max_lbfgs_iters=100)

Specifying initial values as a function
fit_memc_w_init_fun <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function() list(theta = runif(1))
)
fit_memc_w_init_fun_2 <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function(chain_id) {
silly but demonstrates optional use of chain_id
list(theta = 1 / (chain_id + 1))
}
)

fit_memc_w_init_fun_2%$init()

Specifying initial values as a list of lists
fit_memc_w_init_list <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = list(
list(theta = 0.75), # chain 1
list(theta = 0.25) # chain 2

)
)

fit_optim_w_init_list <- mod$optimize(

86 model-method-pathfinder

data = stan_data,

seed = 123,

init = list(
list(theta = 0.75)

)

)
fit_optim_w_init_list$init()

End(Not run)

model-method-pathfinder
Run Stan’s Pathfinder Variational Inference Algorithm

Description

The $pathfinder () method of a CmdStanModel object runs Stan’s Pathfinder algorithms. Pathfinder
is a variational method for approximately sampling from differentiable log densities. Starting from a
random initialization, Pathfinder locates normal approximations to the target density along a quasi-
Newton optimization path in the unconstrained space, with local covariance estimated using the
negative inverse Hessian estimates produced by the LBFGS optimizer. Pathfinder selects the nor-
mal approximation with the lowest estimated Kullback-Leibler (KL) divergence to the true poste-
rior. Finally Pathfinder draws from that normal approximation and returns the draws transformed to
the constrained scale. See the CmdStan User’s Guide for more details.

Any argument left as NULL will default to the default value used by the installed version of CmdStan

Usage

pathfinder(
data = NULL,
seed = NULL,
refresh = NULL,
init = NULL,
save_latent_dynamics = FALSE,
output_dir = getOption("cmdstanr_output_dir"),
output_basename = NULL,
sig_figs = NULL,
opencl_ids = NULL,
num_threads = NULL,
init_alpha = NULL,
tol_obj = NULL,
tol_rel_obj = NULL,
tol_grad = NULL,
tol_rel_grad = NULL,
tol_param = NULL,
history_size = NULL,

https://mc-stan.org/docs/cmdstan-guide/

model-method-pathfinder 87

single_path_draws = NULL,

draws = NULL,
num_paths

4,

max_lbfgs_iters = NULL,
num_elbo_draws = NULL,
save_single_paths = NULL,
psis_resample = NULL,
calculate_lp = NULL,

show_messages

= TRUE,

show_exceptions = TRUE,
save_cmdstan_config = NULL

Arguments

data

seed

refresh

init

(multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-

ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()

for details on the conversions performed on R objects before they are passed
to Stan.

A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

(non-negative integer) The number of iterations between printed screen updates.
If refresh = 0, only error messages will be printed.

(multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0@. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

* The number @. This initializes all parameters to ;
* A character vector of paths (one per chain) to JSON or Rdump files con-

taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMLC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have

88

model-method-pathfinder

named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

* A CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanPathfinder, or CmdStanLaplace

fit object. If the fit object’s parameters are only a subset of the model
parameters then the other parameters will be drawn by Stan’s default ini-
tialization. The fit object must have at least some parameters that are the
same name and dimensions as the current Stan model. For the sample and
pathfinder method, if the fit object has fewer draws than the requested
number of chains/paths then the inits will be drawn using sampling with
replacement. Otherwise sampling without replacement will be used. When
a CmdStanPathfinder fit object is used as the init, if . psis_resample
was set to FALSE and calculate_lp was set to TRUE (default), then resam-
pling without replacement with Pareto smoothed weights will be used. If
psis_resample was set to TRUE or calculate_lp was set to FALSE then
sampling without replacement with uniform weights will be used to select
the draws. PSIS resampling is used to select the draws for CmdStanVB, and
CmdStanLaplace fit objects.

* A type inheriting from posterior::draws. If the draws object has less
samples than the number of requested chains/paths then the inits will be
drawn using sampling with replacement. Otherwise sampling without re-
placement will be used. If the draws object’s parameters are only a subset
of the model parameters then the other parameters will be drawn by Stan’s
default initialization. The fit object must have at least some parameters that
are the same name and dimensions as the current Stan model.

save_latent_dynamics

output_dir

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

(string) A path to a directory where CmdStan should write its output CSV files.
For MCMC there will be one file per chain; for other methods there will be
a single file. For interactive use this can typically be left at NULL (temporary
directory) since CmdStanR makes the CmdStan output (posterior draws and di-
agnostics) available in R via methods of the fitted model objects. This can be set
for an entire R session using options(cmdstanr_output_dir). The behavior
of output_dir is as follows:

* If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary

model-method-pathfinder 89

files are removed when the fitted model object is garbage collected (manu-
ally or automatically).
* Ifapath, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().
output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

num_threads (positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections (e.g., for multi-path pathfinder as well
as reduce_sum).

init_alpha (positive real) The initial step size parameter.

tol_obj (positive real) Convergence tolerance on changes in objective function value.

tol_rel_obj (positive real) Convergence tolerance on relative changes in objective function
value.

tol_grad (positive real) Convergence tolerance on the norm of the gradient.

tol_rel_grad (positive real) Convergence tolerance on the relative norm of the gradient.
tol_param (positive real) Convergence tolerance on changes in parameter value.

history_size (positive integer) The size of the history used when approximating the Hessian.
single_path_draws
(positive integer) Number of draws a single pathfinder should return. The num-
ber of draws PSIS sampling samples from will be equal to single_path_draws
* num_paths.

draws (positive integer) Number of draws to return after performing pareto smooted
importance sampling (PSIS). This should be smaller than single_path_draws
* num_paths (future versions of CmdStan will throw a warning).
num_paths (positive integer) Number of single pathfinders to run.
max_lbfgs_iters
(positive integer) The maximum number of iterations for LBFGS.
num_elbo_draws (positive integer) Number of draws to make when calculating the ELBO of the
approximation at each iteration of LBFGS.
save_single_paths
(logical) Whether to save the results of single pathfinder runs in multi-pathfinder.
psis_resample (logical) Whether to perform pareto smoothed importance sampling. If TRUE,

the number of draws returned will be equal to draws. If FALSE, the number of
draws returned will be equal to single_path_draws * num_paths.

90 model-method-pathfinder

calculate_lp (logical) Whether to calculate the log probability of the draws. If TRUE, the
log probability will be calculated and given in the output. If FALSE, the log
probability will only be returned for draws used to determine the ELBO in the
pathfinder steps. All other draws will have a log probability of NA. A value of
FALSE will also turn off pareto smoothed importance sampling as the Ip calcula-
tion is needed for PSIS.

show_messages (logical) When TRUE (the default), prints all output during the execution process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

show_exceptions
(logical) When TRUE (the default), prints all informational messages, for exam-
ple rejection of the current proposal. Disable if you wish to silence these mes-
sages, but this is not usually recommended unless you are very confident that
the model is correct up to numerical error. If the messages are silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

save_cmdstan_config
(logical) When TRUE (the default), call CmdStan with argument "output save_config=1"
to save a json file which contains the argument tree and extra information (equiv-
alent to the output CSV file header). This option is only available in CmdStan
2.34.0 and later.

Value

A CmdStanPathfinder object.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

» Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-expose_functions, model-method-format, model-method-generate-quantities,
model-method-laplace, model-method-optimize, model-method-sample, model-method-sample_mpi,
model-method-variables, model-method-variational

Examples

Not run:

library(cmdstanr)
library(posterior)
library(bayesplot)
color_scheme_set("brightblue")

Set path to CmdStan

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

model-method-pathfinder 91

(Note: if you installed CmdStan via install_cmdstan() with default settings
then setting the path is unnecessary but the default below should still work.
Otherwise use the “path™ argument to specify the location of your

CmdStan installation.)

set_cmdstan_path(path = NULL)

Create a CmdStanModel object from a Stan program,

here using the example model that comes with CmdStan

file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")
mod <- cmdstan_model(file)

mod$print()

Print with line numbers. This can be set globally using the

~cmdstanr_print_line_numbers™ option.

mod$print(line_numbers = TRUE)

Data as a named list (like RStan)
stan_data <- list(N =10, y = c(0,1,0,0,0,0,0,0,0,1))

Run MCMC using the 'sample' method
fit_mcmc <- mod$sample(

data = stan_data,

seed = 123,

chains = 2,

parallel_chains = 2

)

Use 'posterior' package for summaries
fit_memc$summary ()

Check sampling diagnostics
fit_mcmc$diagnostic_summary()

Get posterior draws
draws <- fit_mcmc$draws()
print(draws)

Convert to data frame using posterior::as_draws_df
as_draws_df (draws)

Plot posterior using bayesplot (ggplot2)
mcmc_hist(fit_mcmc$draws(”theta"”))

For models fit using MCMC, if you like working with RStan's stanfit objects
then you can create one with rstan::read_stan_csv()
stanfit <- rstan::read_stan_csv(fit_mcmc$output_files())

Run 'optimize' method to get a point estimate (default is Stan's LBFGS algorithm)
and also demonstrate specifying data as a path to a file instead of a list
my_data_file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.data.json")
fit_optim <- mod$optimize(data = my_data_file, seed = 123)

fit_optim$summary ()

92

Run 'optimize'
to the posteri

model-method-pathfinder

again with 'jacobian=TRUE' and then draw from Laplace approximation
or

fit_optim <- mod$optimize(data = my_data_file, jacobian = TRUE)
fit_laplace <- mod$laplace(data = my_data_file, mode = fit_optim, draws = 2000)
fit_laplace$summary()

Run 'variational' method to use ADVI to approximate posterior
fit_vb <- mod$variational(data = stan_data, seed = 123)

fit_vb$summary()

mcmc_hist(fit_vb$draws("theta"))

Run 'pathfinder' method, a new alternative to the variational method
fit_pf <- mod$pathfinder(data = stan_data, seed = 123)

fit_pf$summary()

mcmc_hist(fit_pf$draws(”theta”))

Run 'pathfinde
better covaria
fit_pf <- mod$pa

Specifying ini

r' again with more paths, fewer draws per path,

nce approximation, and fewer LBFGSs iterations

thfinder(data = stan_data, num_paths=10, single_path_draws=40,
history_size=50, max_lbfgs_iters=100)

tial values as a function

fit_memc_w_init_fun <- mod$sample(

data = stan_da
seed = 123,
chains = 2,

refresh = 0,
init = functio
)

fit_memc_w_init_

data = stan_da
seed = 123,
chains = 2,

refresh = 0,
init = functio
silly but
list(theta =
}
)

fit_mcemc_w_init_

Specifying ini
fit_memc_w_init_
data = stan_da
seed = 123,
chains = 2,
refresh = 0,
init = list(
list(theta
list(theta =

)
)

fit_optim_w_init

ta,

n() list(theta = runif(1))

fun_2 <- mod$sample(
ta,

n(chain_id) {
demonstrates optional use of chain_id
1 / (chain_id + 1))

fun_2%$init()
tial values as a list of lists

list <- mod$sample(
ta,

0.75), # chain 1
0.25) # chain 2

_list <- mod$optimize(

model-method-sample 93

data = stan_data,

seed = 123,

init = list(
list(theta = 0.75)

)

)
fit_optim_w_init_list$init()

End(Not run)

model-method-sample Run Stan’s MCMC algorithms

Description

The $sample() method of a CmdStanModel object runs Stan’s main Markov chain Monte Carlo
algorithm.

Any argument left as NULL will default to the default value used by the installed version of CmdStan.
See the CmdStan User’s Guide for more details.

After model fitting any diagnostics specified via the diagnostics argument will be checked and
warnings will be printed if warranted.

Usage
sample(
data = NULL,
seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,

output_dir = getOption("cmdstanr_output_dir"),
output_basename = NULL,

sig_figs = NULL,

chains = 4,

parallel_chains = getOption("mc.cores”, 1),
chain_ids = seqg_len(chains),
threads_per_chain = NULL,

opencl_ids = NULL,

iter_warmup = NULL,

iter_sampling = NULL,

save_warmup = FALSE,

thin = NULL,

max_treedepth = NULL,

adapt_engaged = TRUE,

adapt_delta = NULL,

step_size = NULL,

https://mc-stan.org/docs/cmdstan-guide/

94

metric = NULL,

model-method-sample

metric_file = NULL,

inv_metric = NULL,
init_buffer = NULL,
term_buffer = NULL,

window = NULL,

fixed_param = FALSE,
show_messages
show_exceptions = TRUE,

diagnostics = c("divergences"”, "treedepth”, "ebfmi"),

save_metric

TRUE,

NULL,

save_cmdstan_config = NULL,
cores = NULL,
NULL,

num_chains = NULL,
num_warmup = NULL,
num_samples = NULL,

num_cores =

validate_csv

NULL,

save_extra_diagnostics = NULL,
max_depth = NULL,

stepsize =

Arguments

data

seed

NULL

(multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data

refresh

init

for each chain.

If refresh = @, only error messages will be printed.

the parameters block of the Stan program. One of the following:

(non-negative integer) The number of iterations between printed screen updates.

(multiple options) The initialization method to use for the variables declared in

model-method-sample 95

¢ A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

* The number @. This initializes all parameters to ;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

¢ A CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanPathfinder, or CmdStanLaplace
fit object. If the fit object’s parameters are only a subset of the model
parameters then the other parameters will be drawn by Stan’s default ini-
tialization. The fit object must have at least some parameters that are the
same name and dimensions as the current Stan model. For the sample and
pathfinder method, if the fit object has fewer draws than the requested
number of chains/paths then the inits will be drawn using sampling with
replacement. Otherwise sampling without replacement will be used. When
a CmdStanPathfinder fit object is used as the init, if . psis_resample
was set to FALSE and calculate_1lp was set to TRUE (default), then resam-
pling without replacement with Pareto smoothed weights will be used. If
psis_resample was set to TRUE or calculate_lp was set to FALSE then
sampling without replacement with uniform weights will be used to select
the draws. PSIS resampling is used to select the draws for CmdStanVB, and
CmdStanLaplace fit objects.

* A type inheriting from posterior::draws. If the draws object has less
samples than the number of requested chains/paths then the inits will be
drawn using sampling with replacement. Otherwise sampling without re-
placement will be used. If the draws object’s parameters are only a subset
of the model parameters then the other parameters will be drawn by Stan’s
default initialization. The fit object must have at least some parameters that
are the same name and dimensions as the current Stan model.

save_latent_dynamics

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For MCMC there will be one file per chain; for other methods there will be

96

model-method-sample

a single file. For interactive use this can typically be left at NULL (temporary
directory) since CmdStanR makes the CmdStan output (posterior draws and di-
agnostics) available in R via methods of the fitted model objects. This can be set
for an entire R session using options(cmdstanr_output_dir). The behavior
of output_dir is as follows:

o If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

chains (positive integer) The number of Markov chains to run. The default is 4.

parallel_chains
(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
"mc. cores”, which can be set for an entire R session by options(mc.cores=value).
If the "mc. cores” option has not been set then the default is 1.

chain_ids (integer vector) A vector of chain IDs. Must contain as many unique positive
integers as the number of chains. If not set, the default chain IDs are used
(integers starting from 1).

threads_per_chain
(positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections within an MCMC chain (e.g., when
using the Stan functions reduce_sum() ormap_rect()). This is in contrast with
parallel_chains, which specifies the number of chains to run in parallel. The
actual number of CPU cores used is parallel_chains*threads_per_chain.
For an example of using threading see the Stan case study Reduce Sum: A
Minimal Example.

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

iter_warmup (positive integer) The number of warmup iterations to run per chain. Note: in
the CmdStan User’s Guide this is referred to as num_warmup.

iter_sampling (positive integer) The number of post-warmup iterations to run per chain. Note:
in the CmdStan User’s Guide this is referred to as num_samples.

save_warmup (logical) Should warmup iterations be saved? The default is FALSE.

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

model-method-sample 97

thin (positive integer) The period between saved samples. This should typically be
left at its default (no thinning) unless memory is a problem.

max_treedepth (positive integer) The maximum allowed tree depth for the NUTS engine. See
the Tree Depth section of the CmdStan User’s Guide for more details.

adapt_engaged (logical) Do warmup adaptation? The default is TRUE. If a precomputed in-
verse metric is specified via the inv_metric argument (or metric_file) then,
if adapt_engaged=TRUE, Stan will use the provided inverse metric just as an ini-
tial guess during adaptation. To turn off adaptation when using a precomputed
inverse metric set adapt_engaged=FALSE.

adapt_delta (real in (@, 1)) The adaptation target acceptance statistic.

step_size (positive real) The initial step size for the discrete approximation to continuous
Hamiltonian dynamics. This is further tuned during warmup.

metric (string) One of "diag_e", "dense_e", or "unit_e", specifying the geometry of
the base manifold. See the Euclidean Metric section of the CmdStan User’s
Guide for more details. To specify a precomputed (inverse) metric, see the
inv_metric argument below.

metric_file (character vector) The paths to JSON or Rdump files (one per chain) compatible
with CmdStan that contain precomputed inverse metrics. The metric_file
argument is inherited from CmdStan but is confusing in that the entry in JSON
or Rdump file(s) must be named inv_metric, referring to the inverse metric.
We recommend instead using CmdStanR’s inv_metric argument (see below) to
specify an inverse metric directly using a vector or matrix from your R session.

inv_metric (vector, matrix) A vector (if metric="'diag_e') or a matrix (if metric="dense_e")
for initializing the inverse metric. This can be used as an alternative to the
metric_file argument. A vector is interpreted as a diagonal metric. The in-
verse metric is usually set to an estimate of the posterior covariance. See the
adapt_engaged argument above for details about (and control over) how speci-
fying a precomputed inverse metric interacts with adaptation.

init_buffer (nonnegative integer) Width of initial fast timestep adaptation interval during
warmup.

term_buffer (nonnegative integer) Width of final fast timestep adaptation interval during
warmup.

window (nonnegative integer) Initial width of slow timestep/metric adaptation interval.

fixed_param (logical) When TRUE, call CmdStan with argument "algorithm=fixed_param”.
The default is FALSE. The fixed parameter sampler generates a new sample with-
out changing the current state of the Markov chain; only generated quantities
may change. This can be useful when, for example, trying to generate pseudo-
data using the generated quantities block. If the parameters block is empty then
using fixed_param=TRUE is mandatory. When fixed_param=TRUE the chains
and parallel_chains arguments will be set to 1.

show_messages (logical) When TRUE (the default), prints all output during the execution process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

98 model-method-sample

show_exceptions
(logical) When TRUE (the default), prints all informational messages, for exam-
ple rejection of the current proposal. Disable if you wish to silence these mes-
sages, but this is not usually recommended unless you are very confident that
the model is correct up to numerical error. If the messages are silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

diagnostics (character vector) The diagnostics to automatically check and warn about af-
ter sampling. Setting this to an empty string ""” or NULL can be used to pre-
vent CmdStanR from automatically reading in the sampler diagnostics from
CSV if you wish to manually read in the results and validate them yourself,
for example using read_cmdstan_csv(). The currently available diagnostics
are "divergences”, "treedepth”, and "ebfmi” (the default is to check all of
them).
These diagnostics are also available after fitting. The $sampler_diagnostics()
method provides access the diagnostic values for each iteration and the $diagnostic_summary()
method provides summaries of the diagnostics and can regenerate the warning
messages.
Diagnostics like R-hat and effective sample size are not currently available via
the diagnostics argument but can be checked after fitting using the $summary ()
method.

save_metric (logical) When TRUE, call CmdStan with argument "adaptation save_metric=1"
to save the adapted metric in separate JSON file with elements "stepsize", "met-
ric_type" and "inv_metric". The default is TRUE. This option is only available in
CmdStan 2.34.0 and later.

save_cmdstan_config
(logical) When TRUE (the default), call CmdStan with argument "output save_config=1"
to save a json file which contains the argument tree and extra information (equiv-
alent to the output CSV file header). This option is only available in CmdStan
2.34.0 and later.

cores, num_cores, num_chains, num_warmup, num_samples,

save_extra_diagnostics, max_depth, stepsize, validate_csv
Deprecated and will be removed in a future release.

Value

A CmdStanMCMC object.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-expose_functions, model-method-format, model-method-generate-quantities,

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

model-method-sample 99

model-method-laplace, model-method-optimize, model-method-pathfinder, model-method-sample_mpi,
model-method-variables, model-method-variational

Examples

Not run:

library(cmdstanr)
library(posterior)
library(bayesplot)
color_scheme_set("brightblue")

Set path to CmdStan

(Note: if you installed CmdStan via install_cmdstan() with default settings
then setting the path is unnecessary but the default below should still work.
Otherwise use the “path™ argument to specify the location of your

CmdStan installation.)

set_cmdstan_path(path = NULL)

Create a CmdStanModel object from a Stan program,

here using the example model that comes with CmdStan

file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan”)
mod <- cmdstan_model(file)

mod$print()

Print with line numbers. This can be set globally using the

~cmdstanr_print_line_numbers® option.

mod$print(line_numbers = TRUE)

Data as a named list (like RStan)
stan_data <- list(N =10, y = c(0,1,0,0,0,0,0,0,0,1))

Run MCMC using the 'sample' method
fit_mcmc <- mod$sample(

data = stan_data,

seed = 123,

chains = 2,

parallel_chains = 2

)

Use 'posterior' package for summaries
fit_memc$summary ()

Check sampling diagnostics
fit_mcmc$diagnostic_summary()

Get posterior draws
draws <- fit_mcmc$draws()
print(draws)

Convert to data frame using posterior::as_draws_df
as_draws_df (draws)

Plot posterior using bayesplot (ggplot2)
mcme_hist(fit_mcmc$draws(”theta"”))

100 model-method-sample

For models fit using MCMC, if you like working with RStan's stanfit objects
then you can create one with rstan::read_stan_csv()
stanfit <- rstan::read_stan_csv(fit_mcmc$output_files())

Run 'optimize' method to get a point estimate (default is Stan's LBFGS algorithm)
and also demonstrate specifying data as a path to a file instead of a list
my_data_file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.data.json")
fit_optim <- mod$optimize(data = my_data_file, seed = 123)

fit_optim$summary ()

Run 'optimize' again with 'jacobian=TRUE' and then draw from Laplace approximation
to the posterior

fit_optim <- mod$optimize(data = my_data_file, jacobian = TRUE)

fit_laplace <- mod$laplace(data = my_data_file, mode = fit_optim, draws = 2000)
fit_laplace$summary()

Run 'variational' method to use ADVI to approximate posterior
fit_vb <- mod$variational(data = stan_data, seed = 123)
fit_vb$summary()

mcmc_hist(fit_vb$draws("theta"))

Run 'pathfinder' method, a new alternative to the variational method
fit_pf <- mod$pathfinder(data = stan_data, seed = 123)
fit_pf$summary()

meme_hist(fit_pf$draws("theta”))

Run 'pathfinder' again with more paths, fewer draws per path,

better covariance approximation, and fewer LBFGSs iterations

fit_pf <- mod$pathfinder(data = stan_data, num_paths=10, single_path_draws=40,
history_size=50, max_lbfgs_iters=100)

Specifying initial values as a function
fit_mcemc_w_init_fun <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function() list(theta = runif(1))
)
fit_memc_w_init_fun_2 <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function(chain_id) {
silly but demonstrates optional use of chain_id
list(theta = 1 / (chain_id + 1))
}
)

fit_memc_w_init_fun_2%$init()

model-method-sample_mpi 101

Specifying initial values as a list of lists
fit_memc_w_init_list <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = list(
list(theta = 0.75), # chain 1
list(theta = 0.25) # chain 2
)
)
fit_optim_w_init_list <- mod$optimize(
data = stan_data,

seed = 123,

init = list(
list(theta = 0.75)

)

)
fit_optim_w_init_list$init()

End(Not run)

model-method-sample_mpi
Run Stan’s MCMC algorithms with MPI

Description

The $sample_mpi() method of a CmdStanModel object is identical to the $sample() method but
with support for MPI (message passing interface). The target audience for MPI are those with large
computer clusters. For other users, the $sample() method provides both parallelization of chains
and threading support for within-chain parallelization.

In order to use MPI with Stan, an MPI implementation must be installed. For Unix systems the
most commonly used implementations are MPICH and OpenMPI. The implementations provide an
MPI C++ compiler wrapper (for example mpicxx), which is required to compile the model.

An example of compiling with MPI:

mpi_options = 1list(STAN_MPI=TRUE, CXX="mpicxx", TBB_CXX_TYPE="gcc")
mod = cmdstan_model ("model.stan"”, cpp_options = mpi_options)

The C++ options that must be supplied to the compile call are:

* STAN_MPI: Enables the use of MPI with Stan if TRUE.
* CXX: The name of the MPI C++ compiler wrapper. Typically "mpicxx”.

e TBB_CXX_TYPE: The C++ compiler the MPI wrapper wraps. Typically "gcc” on Linux and
"clang"” on macOS.

102 model-method-sample_mpi

In the call to the $sample_mpi () method it is also possible to provide the name of the MPI launcher
(mpi_cmd, defaulting to "mpiexec”) and any other MPI launch arguments (mpi_args). In most
cases, it is enough to only define the number of processes. To use n_procs processes specify
mpi_args = list("n" =n_procs).

Usage

sample_mpi(
data = NULL,
mpi_cmd = "mpiexec”,
mpi_args = NULL,
seed = NULL,
refresh = NULL,
init = NULL,
save_latent_dynamics = FALSE,
output_dir = getOption("cmdstanr_output_dir"),
output_basename = NULL,
chains = 1,
chain_ids = seqg_len(chains),
iter_warmup = NULL,
iter_sampling = NULL,
save_warmup = FALSE,
thin = NULL,
max_treedepth = NULL,
adapt_engaged = TRUE,
adapt_delta = NULL,
step_size = NULL,
metric = NULL,
metric_file = NULL,
inv_metric = NULL,
init_buffer = NULL,
term_buffer = NULL,
window = NULL,
fixed_param = FALSE,
sig_figs = NULL,
show_messages = TRUE,
show_exceptions = TRUE,
diagnostics = c("divergences"”, "treedepth”, "ebfmi"),
save_cmdstan_config = NULL,
validate_csv = TRUE

Arguments

data (multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan using write_stan_json(). Seewrite_stan_json()

model-method-sample_mpi 103

for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

mpi_cmd (string) The MPI launcher used for launching MPI processes. The default launcher
is "mpiexec”.
mpi_args (list) A list of arguments to use when launching MPI processes. For example,

mpi_args = list("n" = 4) launches the executable as mpiexec -n 4 model_executable,
followed by CmdStan arguments for the model executable.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

refresh (non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

init (multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

e The number @. This initializes all parameters to ;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

¢ A CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanPathfinder, or CmdStanLaplace
fit object. If the fit object’s parameters are only a subset of the model
parameters then the other parameters will be drawn by Stan’s default ini-
tialization. The fit object must have at least some parameters that are the
same name and dimensions as the current Stan model. For the sample and
pathfinder method, if the fit object has fewer draws than the requested
number of chains/paths then the inits will be drawn using sampling with
replacement. Otherwise sampling without replacement will be used. When

104

model-method-sample_mpi

a CmdStanPathfinder fit object is used as the init, if . psis_resample
was set to FALSE and calculate_1p was set to TRUE (default), then resam-
pling without replacement with Pareto smoothed weights will be used. If
psis_resample was set to TRUE or calculate_lp was set to FALSE then
sampling without replacement with uniform weights will be used to select
the draws. PSIS resampling is used to select the draws for CmdStanVB, and
CmdStanLaplace fit objects.

* A type inheriting from posterior::draws. If the draws object has less
samples than the number of requested chains/paths then the inits will be
drawn using sampling with replacement. Otherwise sampling without re-
placement will be used. If the draws object’s parameters are only a subset
of the model parameters then the other parameters will be drawn by Stan’s
default initialization. The fit object must have at least some parameters that
are the same name and dimensions as the current Stan model.

save_latent_dynamics

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For MCMC there will be one file per chain; for other methods there will be
a single file. For interactive use this can typically be left at NULL (temporary
directory) since CmdStanR makes the CmdStan output (posterior draws and di-
agnostics) available in R via methods of the fitted model objects. This can be set
for an entire R session using options(cmdstanr_output_dir). The behavior
of output_dir is as follows:

o If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

o If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

chains (positive integer) The number of Markov chains to run. The default is 4.

chain_ids (integer vector) A vector of chain IDs. Must contain as many unique positive
integers as the number of chains. If not set, the default chain IDs are used
(integers starting from 1).

iter_warmup (positive integer) The number of warmup iterations to run per chain. Note: in
the CmdStan User’s Guide this is referred to as num_warmup.

model-method-sample_mpi

iter_sampling

save_warmup

thin

max_treedepth

adapt_engaged

adapt_delta

step_size

metric

metric_file

inv_metric

init_buffer

term_buffer

window

fixed_param

105

(positive integer) The number of post-warmup iterations to run per chain. Note:
in the CmdStan User’s Guide this is referred to as num_samples.

(logical) Should warmup iterations be saved? The default is FALSE.

(positive integer) The period between saved samples. This should typically be
left at its default (no thinning) unless memory is a problem.

(positive integer) The maximum allowed tree depth for the NUTS engine. See
the Tree Depth section of the CmdStan User’s Guide for more details.

(logical) Do warmup adaptation? The default is TRUE. If a precomputed in-
verse metric is specified via the inv_metric argument (or metric_file) then,
if adapt_engaged=TRUE, Stan will use the provided inverse metric just as an ini-
tial guess during adaptation. To turn off adaptation when using a precomputed
inverse metric set adapt_engaged=FALSE.

(real in (@, 1)) The adaptation target acceptance statistic.

(positive real) The initial step size for the discrete approximation to continuous
Hamiltonian dynamics. This is further tuned during warmup.

(string) One of "diag_e", "dense_e", or "unit_e", specifying the geometry of
the base manifold. See the Euclidean Metric section of the CmdStan User’s
Guide for more details. To specify a precomputed (inverse) metric, see the
inv_metric argument below.

(character vector) The paths to JSON or Rdump files (one per chain) compatible
with CmdStan that contain precomputed inverse metrics. The metric_file
argument is inherited from CmdStan but is confusing in that the entry in JSON
or Rdump file(s) must be named inv_metric, referring to the inverse metric.
We recommend instead using CmdStanR’s inv_metric argument (see below) to
specify an inverse metric directly using a vector or matrix from your R session.

(vector, matrix) A vector (if metric="'diag_e"') or amatrix (if metric="'dense_e")

for initializing the inverse metric. This can be used as an alternative to the
metric_file argument. A vector is interpreted as a diagonal metric. The in-
verse metric is usually set to an estimate of the posterior covariance. See the
adapt_engaged argument above for details about (and control over) how speci-
fying a precomputed inverse metric interacts with adaptation.

(nonnegative integer) Width of initial fast timestep adaptation interval during
warmup.

(nonnegative integer) Width of final fast timestep adaptation interval during
warmup.

(nonnegative integer) Initial width of slow timestep/metric adaptation interval.

(logical) When TRUE, call CmdStan with argument "algorithm=fixed_param".
The default is FALSE. The fixed parameter sampler generates a new sample with-
out changing the current state of the Markov chain; only generated quantities
may change. This can be useful when, for example, trying to generate pseudo-
data using the generated quantities block. If the parameters block is empty then
using fixed_param=TRUE is mandatory. When fixed_param=TRUE the chains
and parallel_chains arguments will be set to 1.

106 model-method-sample_mpi

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

show_messages (logical) When TRUE (the default), prints all output during the execution process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

show_exceptions
(logical) When TRUE (the default), prints all informational messages, for exam-
ple rejection of the current proposal. Disable if you wish to silence these mes-
sages, but this is not usually recommended unless you are very confident that
the model is correct up to numerical error. If the messages are silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

diagnostics (character vector) The diagnostics to automatically check and warn about af-
ter sampling. Setting this to an empty string "" or NULL can be used to pre-
vent CmdStanR from automatically reading in the sampler diagnostics from
CSV if you wish to manually read in the results and validate them yourself,
for example using read_cmdstan_csv(). The currently available diagnostics
are "divergences”, "treedepth”, and "ebfmi” (the default is to check all of
them).
These diagnostics are also available after fitting. The $sampler_diagnostics()
method provides access the diagnostic values for each iteration and the $diagnostic_summary()
method provides summaries of the diagnostics and can regenerate the warning
messages.

Diagnostics like R-hat and effective sample size are not currently available via
the diagnostics argument but can be checked after fitting using the $summary ()
method.
save_cmdstan_config
(logical) When TRUE (the default), call CmdStan with argument "output save_config=1"
to save a json file which contains the argument tree and extra information (equiv-
alent to the output CSV file header). This option is only available in CmdStan
2.34.0 and later.

validate_csv Deprecated. Use diagnostics instead.

Value

A CmdStanMCMC object.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

model-method-variables 107

The Stan Math Library’s documentation (mc-stan.org/math) for more details on MPI support in
Stan.

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-expose_functions, model-method-format, model-method-generate-quantities,
model-method-laplace, model-method-optimize, model-method-pathfinder, model-method-sample,
model-method-variables, model-method-variational

Examples

Not run:

mpi_options <- list(STAN_MPI=TRUE, CXX="mpicxx", TBB_CXX_TYPE="gcc")
mod <- cmdstan_model("model.stan"”, cpp_options = mpi_options)

fit <- mod$sample_mpi(..., mpi_args = list("n" = 4))

End(Not run)

model-method-variables
Input and output variables of a Stan program

Description

The $variables() method of a CmdStanModel object returns a list, each element representing a
Stan model block: data, parameters, transformed_parameters and generated_quantities.

Each element contains a list of variables, with each variables represented as a list with infromation
on its scalar type (real or int) and number of dimensions.

transformed data is not included, as variables in that block are not part of the model’s input or
output.

Usage

variables()

Value

The $variables() returns a list with information on input and output variables for each of the Stan
model blocks.

See Also

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-expose_functions, model-method-format, model-method-generate-quantities,
model-method-laplace, model-method-optimize, model-method-pathfinder, model-method-sample,
model-method-sample_mpi, model-method-variational

https://mc-stan.org/math/

108 model-method-variational

Examples

Not run:
file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")

create a ~“CmdStanModel™ object, compiling the model is not required
mod <- cmdstan_model(file, compile = FALSE)

mod$variables()

End(Not run)

model-method-variational
Run Stan’s variational approximation algorithms

Description

The $variational() method of a CmdStanModel object runs Stan’s Automatic Differentiation
Variational Inference (ADVI) algorithms. The approximation is a Gaussian in the unconstrained
variable space. Stan implements two ADVI algorithms: the algorithm="meanfield"” option uses
a fully factorized Gaussian for the approximation; the algorithm="fullrank” option uses a Gaus-
sian with a full-rank covariance matrix for the approximation. See the CmdStan User’s Guide for
more details.

Any argument left as NULL will default to the default value used by the installed version of CmdStan.

Usage

variational(
data = NULL,
seed = NULL,
refresh = NULL,
init = NULL,
save_latent_dynamics = FALSE,
output_dir = getOption("cmdstanr_output_dir"),
output_basename = NULL,
sig_figs = NULL,
threads = NULL,
opencl_ids = NULL,
algorithm = NULL,
iter = NULL,
grad_samples
elbo_samples
eta = NULL,
adapt_engaged = NULL,
adapt_iter = NULL,

NULL,
NULL,

https://mc-stan.org/docs/cmdstan-guide/

model-method-variational 109

tol_rel_obj = NULL,
eval_elbo = NULL,
output_samples = NULL,

draws = NULL,
show_messages

= TRUE,

show_exceptions = TRUE,
save_cmdstan_config = NULL

Arguments

data

seed

refresh

init

(multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

(non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

(multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

¢ A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

* The number 0. This initializes all parameters to 0;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no

110 model-method-variational

arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

* A CmdStanMCMC, CmdStanMLE, CmdStanVB, CmdStanPathfinder, or CmdStanLaplace
fit object. If the fit object’s parameters are only a subset of the model
parameters then the other parameters will be drawn by Stan’s default ini-
tialization. The fit object must have at least some parameters that are the
same name and dimensions as the current Stan model. For the sample and
pathfinder method, if the fit object has fewer draws than the requested
number of chains/paths then the inits will be drawn using sampling with
replacement. Otherwise sampling without replacement will be used. When
a CmdStanPathfinder fit object is used as the init, if . psis_resample
was set to FALSE and calculate_lp was set to TRUE (default), then resam-
pling without replacement with Pareto smoothed weights will be used. If
psis_resample was set to TRUE or calculate_lp was set to FALSE then
sampling without replacement with uniform weights will be used to select
the draws. PSIS resampling is used to select the draws for CmdStanVB, and
CmdStanLaplace fit objects.

* A type inheriting from posterior::draws. If the draws object has less
samples than the number of requested chains/paths then the inits will be
drawn using sampling with replacement. Otherwise sampling without re-
placement will be used. If the draws object’s parameters are only a subset
of the model parameters then the other parameters will be drawn by Stan’s
default initialization. The fit object must have at least some parameters that
are the same name and dimensions as the current Stan model.

save_latent_dynamics

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For MCMC there will be one file per chain; for other methods there will be
a single file. For interactive use this can typically be left at NULL (temporary
directory) since CmdStanR makes the CmdStan output (posterior draws and di-
agnostics) available in R via methods of the fitted model objects. This can be set
for an entire R session using options(cmdstanr_output_dir). The behavior
of output_dir is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* Ifapath, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

model-method-variational 111

output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

threads (positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections (e.g., when using the Stan functions
reduce_sum() or map_rect()).

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

algorithm (string) The algorithm. Either "meanfield” or "fullrank”.
iter (positive integer) The maximum number of iterations.
grad_samples (positive integer) The number of samples for Monte Carlo estimate of gradients.

elbo_samples (positive integer) The number of samples for Monte Carlo estimate of ELBO
(objective function).

eta (positive real) The step size weighting parameter for adaptive step size sequence.

adapt_engaged (logical) Do warmup adaptation?

adapt_iter (positive integer) The maximum number of adaptation iterations.
tol_rel_obj (positive real) Convergence tolerance on the relative norm of the objective.
eval_elbo (positive integer) Evaluate ELBO every Nth iteration.

output_samples (positive integer) Use draws argument instead. output_samples will be depre-
cated in the future.

draws (positive integer) Number of approximate posterior samples to draw and save.

show_messages (logical) When TRUE (the default), prints all output during the execution process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

show_exceptions
(logical) When TRUE (the default), prints all informational messages, for exam-
ple rejection of the current proposal. Disable if you wish to silence these mes-
sages, but this is not usually recommended unless you are very confident that
the model is correct up to numerical error. If the messages are silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

save_cmdstan_config
(logical) When TRUE (the default), call CmdStan with argument "output save_config=1"
to save a json file which contains the argument tree and extra information (equiv-
alent to the output CSV file header). This option is only available in CmdStan
2.34.0 and later.

112 model-method-variational

Value

A CmdStanVB object.

See Also

The CmdStanR website (mc-stan.org/cmdstanr) for online documentation and tutorials.

The Stan and CmdStan documentation:

 Stan documentation: mc-stan.org/users/documentation

* CmdStan User’s Guide: mc-stan.org/docs/cmdstan-guide

Other CmdStanModel methods: model-method-check_syntax, model-method-compile, model-method-diagnose,
model-method-expose_functions, model-method-format, model-method-generate-quantities,
model-method-laplace, model-method-optimize, model-method-pathfinder, model-method-sample,
model-method-sample_mpi, model-method-variables

Examples

Not run:

library(cmdstanr)
library(posterior)
library(bayesplot)
color_scheme_set("brightblue")

Set path to CmdStan

(Note: if you installed CmdStan via install_cmdstan() with default settings
then setting the path is unnecessary but the default below should still work.
Otherwise use the “path™ argument to specify the location of your

CmdStan installation.)

set_cmdstan_path(path = NULL)

Create a CmdStanModel object from a Stan program,

here using the example model that comes with CmdStan

file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.stan")
mod <- cmdstan_model(file)

mod$print()

Print with line numbers. This can be set globally using the

“cmdstanr_print_line_numbers™ option.

mod$print(line_numbers = TRUE)

Data as a named list (like RStan)
stan_data <- list(N =10, y = c(0,1,0,0,0,0,0,0,0,1))

Run MCMC using the 'sample' method
fit_mcmc <- mod$sample(

data = stan_data,

seed = 123,

chains = 2,

parallel_chains = 2

)

https://mc-stan.org/cmdstanr/
https://mc-stan.org/users/documentation/
https://mc-stan.org/docs/cmdstan-guide/

model-method-variational 113

Use 'posterior' package for summaries
fit_mcmc$summary ()

Check sampling diagnostics
fit_mcmc$diagnostic_summary()

Get posterior draws
draws <- fit_mcmc$draws()
print(draws)

Convert to data frame using posterior::as_draws_df
as_draws_df (draws)

Plot posterior using bayesplot (ggplot2)
mcmc_hist(fit_mcmc$draws(”theta”))

For models fit using MCMC, if you like working with RStan's stanfit objects
then you can create one with rstan::read_stan_csv()
stanfit <- rstan::read_stan_csv(fit_mcmc$output_files())

Run 'optimize' method to get a point estimate (default is Stan's LBFGS algorithm)
and also demonstrate specifying data as a path to a file instead of a list
my_data_file <- file.path(cmdstan_path(), "examples/bernoulli/bernoulli.data.json")
fit_optim <- mod$optimize(data = my_data_file, seed = 123)

fit_optim$summary ()

Run 'optimize' again with 'jacobian=TRUE' and then draw from Laplace approximation
to the posterior

fit_optim <- mod$optimize(data = my_data_file, jacobian = TRUE)

fit_laplace <- mod$laplace(data = my_data_file, mode = fit_optim, draws = 2000)
fit_laplace$summary()

Run 'variational' method to use ADVI to approximate posterior
fit_vb <- mod$variational(data = stan_data, seed = 123)
fit_vb$summary()

mcme_hist(fit_vb$draws("theta"))

Run 'pathfinder' method, a new alternative to the variational method
fit_pf <- mod$pathfinder(data = stan_data, seed = 123)
fit_pf$summary()

meme_hist(fit_pf$draws(”theta™))

Run 'pathfinder' again with more paths, fewer draws per path,

better covariance approximation, and fewer LBFGSs iterations

fit_pf <- mod$pathfinder(data = stan_data, num_paths=10, single_path_draws=40,
history_size=50, max_lbfgs_iters=100)

Specifying initial values as a function
fit_mcemc_w_init_fun <- mod$sample(

data = stan_data,

seed = 123,

chains = 2,

114 read_cmdstan_csv

refresh = 0,
init = function() list(theta = runif(1))
)
fit_mcmc_w_init_fun_2 <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = function(chain_id) {
silly but demonstrates optional use of chain_id
list(theta = 1 / (chain_id + 1))
}
)

fit_memc_w_init_fun_2%$init()

Specifying initial values as a list of lists
fit_memc_w_init_list <- mod$sample(
data = stan_data,
seed = 123,
chains = 2,
refresh = 0,
init = list(
list(theta
list(theta
)
)
fit_optim_w_init_list <- mod$optimize(
data = stan_data,

0.75), # chain 1
0.25) # chain 2

seed = 123,

init = list(
list(theta = 0.75)

)

)
fit_optim_w_init_list$init()

End(Not run)

read_cmdstan_csv Read CmdStan CSV files into R

Description

read_cmdstan_csv() is used internally by CmdStanR to read CmdStan’s output CSV files into R.
It can also be used by CmdStan users as a more flexible and efficient alternative to rstan: : read_stan_csv ().
See the Value section for details on the structure of the returned list.

It is also possible to create CmdStanR’s fitted model objects directly from CmdStan CSV files using
the as_cmdstan_fit () function.

read_cmdstan_csv 115

Usage

read_cmdstan_csv(

files,

variables = NULL,

sampler_diagnostics = NULL,

format = getOption("cmdstanr_draws_format"”, NULL)
)

as_cmdstan_fit(
files,
check_diagnostics = TRUE,
format = getOption("cmdstanr_draws_format")

)
Arguments
files (character vector) The paths to the CmdStan CSV files. These can be files gen-
erated by running CmdStanR or running CmdStan directly.
variables (character vector) Optionally, the names of the variables (parameters, trans-

formed parameters, and generated quantities) to read in.

e If NULL (the default) then all variables are included.

nn

* If an empty string (variables="") then none are included.
* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta"” selects all elements of theta;
— variables = c("thetal[1]", "thetal[3]") selects only the 1st and 3rd
elements.
sampler_diagnostics
(character vector) Works the same way as variables but for sampler diagnostic

variables (e.g., "treedepth__", "accept_stat__", etc.). Ignored if the model
was not fit using MCMC.
format (string) The format for storing the draws or point estimates. The default depends

on the method used to fit the model. See draws for details, in particular the note

about speed and memory for models with many parameters.
check_diagnostics

(logical) For models fit using MCMC, should diagnostic checks be performed

after reading in the files? The default is TRUE but set to FALSE to avoid checking

for problems with divergences and treedepth.

Value

as_cmdstan_fit() returns a CmdStanMCMC, CmdStanMLE, CmdStanLaplace or CmdStanVB
object. Some methods typically defined for those objects will not work (e.g. save_data_file())
but the important methods like $summary (), $draws(), $sampler_diagnostics() and others will
work fine.

read_cmdstan_csv() returns a named list with the following components:

116 read_cmdstan_csv

* metadata: A list of the meta information from the run that produced the CSV file(s). See
Examples below.
The other components in the returned list depend on the method that produced the CSV file(s).
For sampling the returned list also includes the following components:
e time: Run time information for the individual chains. The returned object is the same as for

the $time() method except the total run time can’t be inferred from the CSV files (the chains
may have been run in parallel) and is therefore NA.

* inv_metric: A list (one element per chain) of inverse mass matrices or their diagonals, de-
pending on the type of metric used.

* step_size: A list (one element per chain) of the step sizes used.

* warmup_draws: If save_warmup was TRUE when fitting the model then a draws_array (or
different format if format is specified) of warmup draws.

* post_warmup_draws: A draws_array (or different format if format is specified) of post-
warmup draws.

* warmup_sampler_diagnostics: If save_warmup was TRUE when fitting the model then a
draws_array (or different format if format is specified) of warmup draws of the sampler
diagnostic variables.

* post_warmup_sampler_diagnostics: A draws_array (or different format if format is spec-
ified) of post-warmup draws of the sampler diagnostic variables.

For optimization the returned list also includes the following components:
* point_estimates: Point estimates for the model parameters.
For laplace and variational inference the returned list also includes the following components:

e draws: A draws_matrix (or different format if format is specified) of draws from the ap-
proximate posterior distribution.

For standalone generated quantities the returned list also includes the following components:

* generated_quantities: A draws_array of the generated quantities.

Examples
Not run:
Generate some CSV files to use for demonstration
fitl <- cmdstanr_example("logistic”, method = "sample"”, save_warmup = TRUE)

csv_files <- fitl1$output_files()
print(csv_files)

Creating fitting model objects
Create a CmdStanMCMC object from the CSV files
fit2 <- as_cmdstan_fit(csv_files)

fit2$print("beta”)

Using read_cmdstan_csv

register_knitr_engine 117

#

Read in everything

x <- read_cmdstan_csv(csv_files)
str(x)

Don't read in any of the sampler diagnostic variables
X <- read_cmdstan_csv(csv_files, sampler_diagnostics = "")

Don't read in any of the parameters or generated quantities
x <- read_cmdstan_csv(csv_files, variables = "")

Read in only specific parameters and sampler diagnostics
X <- read_cmdstan_csv(

csv_files,
variables = c("alpha”, "betal[2]"),
sampler_diagnostics = c("n_leapfrog__", "accept_stat__")

For non-scalar parameters all elements can be selected or only some elements,
e.g. all of the vector "beta” but only one element of the vector "log_lik"”
X <- read_cmdstan_csv(
csv_files,
variables = c("beta”, "log_lik[3]")
)

End(Not run)

register_knitr_engine Register CmdStanR’s knitr engine for Stan

Description
Registers CmdStanR’s knitr engine eng_cmdstan() for processing Stan chunks. Refer to the vi-
gnette R Markdown CmdStan Engine for a demonstration.

Usage

register_knitr_engine(override = TRUE)

Arguments
override (logical) Override knitr’s built-in, RStan-based engine for Stan? The default is
TRUE. See Details.
Details

If override = TRUE (default), this registers CmdStanR’s knitr engine as the engine for stan chunks,
replacing knitr’s built-in, RStan-based engine. If override = FALSE, this registers a cmdstan engine

https://mc-stan.org/cmdstanr/articles/r-markdown.html

118 set_cmdstan_path

so that both engines may be used in the same R Markdown document. If the template supports
syntax highlighting for the Stan language, the cmdstan chunks will have stan syntax highlighting
applied to them.

See the vignette R Markdown CmdStan Engine for an example.

Note: When running chunks interactively in RStudio (e.g. when using R Notebooks), it has been
observed that the built-in, RStan-based engine is used for stan chunks even when CmdStanR’s
engine has been registered in the session. When the R Markdown document is knit/rendered, the
correct engine is used. As a workaround, when running chunks interactively, it is recommended to
use the override = FALSE option and change stan chunks to be cmdstan chunks.

If you would like to keep stan chunks as stan chunks, it is possible to specify engine = "cmdstan”
in the chunk options after registering the cmdstan engine with override = FALSE.

References

* Register a custom language engine for knitr

* knitr’s built-in Stan language engine

set_cmdstan_path Get or set the file path to the CmdStan installation

Description

Use the set_cmdstan_path() function to tell CmdStanR where the CmdStan installation in lo-
cated. Once the path has been set, cmdstan_path() will return the full path to the CmdStan instal-
lation and cmdstan_version() will return the CmdStan version number. See Details for how to
avoid manually setting the path in each R session.

Usage

set_cmdstan_path(path = NULL)
cmdstan_path()

cmdstan_version(error_on_NA = TRUE)

Arguments
path (string) The full file path to the CmdStan installation. If NULL (the default) then
the path is set to the default path used by install_cmdstan() if it exists.
error_on_NA (logical) Should an error be thrown if CmdStan is not found. The default is

TRUE. If FALSE, cmdstan_version() returns NULL.

https://mc-stan.org/cmdstanr/articles/r-markdown.html
https://bookdown.org/yihui/rmarkdown/notebook.html
https://bookdown.org/yihui/rmarkdown-cookbook/custom-engine.html
https://bookdown.org/yihui/rmarkdown/language-engines.html#stan

write_stan_file 119

Details

Before the package can be used it needs to know where the CmdStan installation is located. When
the package is loaded it tries to help automate this to avoid having to manually set the path every
session:

* If the environment variable "CMDSTAN" exists at load time then its value will be automatically
set as the default path to CmdStan for the R session. If the environment variable "CMDSTAN"
is set, but a valid CmdStan is not found in the supplied path, the path is treated as a top folder
that contains CmdStan installations. In that case, the CmdStan installation with the largest
version number will be set as the path to CmdStan for the R session.

* If no environment variable is found when loaded but any directory in the form " . cmdstan/cmdstan-[version]”
(e.g., ".cmdstan/cmdstan-2.23.0"), exists in the user’s home directory (Sys. getenv("HOME"),
not the current working directory) then the path to the cmdstan with the largest version number
will be set as the path to CmdStan for the R session. This is the same as the default directory
that install_cmdstan() would use to install the latest version of CmdStan.

It is always possible to change the path after loading the package using set_cmdstan_path(path).

Value

A string. Either the file path to the CmdStan installation or the CmdStan version number.

CmdStan version string if available. If CmdStan is not found and error_on_NAis FALSE, cmdstan_version()
returns NULL.

write_stan_file Write Stan code to a file

Description

Convenience function for writing Stan code to a (possibly temporary) file with a . stan extension.
By default, the file name is chosen deterministically based on a hash of the Stan code, and the file is
not overwritten if it already has correct contents. This means that calling this function multiple times
with the same Stan code will reuse the compiled model. This also however means that the function
is potentially not thread-safe. Using hash_salt = Sys.getpid() should ensure thread-safety in the
rare cases when it is needed.

Usage

write_stan_file(
code,
dir = getOption("cmdstanr_write_stan_file_dir"”, tempdir()),
basename = NULL,
force_overwrite = FALSE,
hash_salt = ""

120 write_stan_file

Arguments

code (character vector) The Stan code to write to the file. This can be a character
vector of length one (a string) containing the entire Stan program or a character
vector with each element containing one line of the Stan program.

dir (string) An optional path to the directory where the file will be written. If omit-
ted, a global option cmdstanr_write_stan_file_dir is used. If the global
options is not set, temporary directory is used.

basename (string) If dir is specified, optionally the basename to use for the file created. If

not specified a file name is generated from hashing the code.

force_overwrite
(logical) If set to TRUE the file will always be overwritten and thus the resulting
model will always be recompiled.

hash_salt (string) Text to add to the model code prior to hashing to determine the file name
if basename is not set.

Value

The path to the file.

Examples

stan program as a single string
stan_program <- "
data {
int<lower=0> N;
array[N] int<lower=0,upper=1> y;
3
parameters {
real<lower=0,upper=1> theta;

3
model {

y ~ bernoulli(theta);
3

n

f <- write_stan_file(stan_program)
print(f)

lines <- readLines(f)
print(lines)
cat(lines, sep = "\n")

stan program as character vector of lines
f2 <- write_stan_file(lines)
identical(readlLines(f), readLines(f2))

write_stan_json 121

write_stan_json Write data to a JSON file readable by CmdStan

Description

Write data to a JSON file readable by CmdStan

Usage

write_stan_json(data, file, always_decimal = FALSE)

Arguments
data (list) A named list of R objects.
file (string) The path to where the data file should be written.

always_decimal (logical) Force generate non-integers with decimal points to better distinguish
between integers and floating point values. If TRUE all R objects in data in-
tended for integers must be of integer type.

Details

write_stan_json() performs several conversions before writing the JSON file:

e logical -> integer (TRUE -> 1, FALSE -> 0)
e data.frame ->matrix (via data.matrix())
e list ->array

* table ->vector, matrix, or array (depending on dimensions of table)

The list to array conversion is intended to make it easier to prepare the data for certain Stan
declarations involving arrays:

* vector[J] v[K] (or equivalently array[K] vector[J] v asof Stan 2.27) can be constructed
in R as a list with K elements where each element a vector of length J

e matrix[I,J] v[K] (or equivalently array[K] matrix[I,J] m as of Stan 2.27) can be
constructed in R as a list with K elements where each element an IxJ matrix

These can also be passed in from R as arrays instead of lists but the list option is provided for
convenience. Unfortunately for arrays with more than one dimension, e.g., vector[J] v[K,L] (or
equivalently array[K,L] vector[J] v as of Stan 2.27) it is not possible to use an R list and an
array must be used instead. For this example the array in R should have dimensions KxLxJ.

122 write_stan_json

Examples

x <- matrix(rnorm(10), 5, 2)

y <- rpois(nrow(x), lambda = 10)

z <- c¢(TRUE, FALSE)

data <- list(N = nrow(x), K = ncol(x), x = x, y =y, z = z)

write data to json file
file <- tempfile(fileext = ".json")
write_stan_json(data, file)

check the contents of the file
cat(readlLines(file), sep = "\n")

demonstrating list to array conversion

suppose x is declared as “vector[3] x[2]" (or equivalently “array[2] vector[3] x7)
we can use a list of length 2 where each element is a vector of length 3

data <- list(x = list(1:3, 4:6))

file <- tempfile(fileext = ".json")

write_stan_json(data, file)

cat(readlLines(file), sep = "\n")

Index

+* CmdStanModel methods
model-method-check_syntax, 61
model-method-compile, 63
model-method-diagnose, 65
model-method-expose_functions, 68
model-method-format, 70
model-method-generate-quantities
72
model-method-laplace, 75
model-method-optimize, 79
model-method-pathfinder, 86
model-method-sample, 93
model-method-sample_mpi, 101
model-method-variables, 107
model-method-variational, 108
x fitted model objects
CmdStanDiagnose, 9
CmdStanGQ, 10
CmdStanLaplace, 12
CmdStanMCMC, 13
CmdStanMLE, 15
CmdStanPathfinder, 20
CmdStanVB, 23
$check_syntax(), 16, 26, 63-65
$cmdstan_diagnose(), 14
$cmdstan_summary (), 14, 20, 24
$code(), 10, 12, 13, 15, 20, 24
$compile(), 17, 22, 26, 62, 68
$constrain_variables(), 14, 16, 24
$diagnose(), 9, 17
$diagnostic_summary(), 14, 50, 98, 106
$draws(), 7, 8, 10, 12, 13, 20, 23,42, 45, 72
$exe_file(), 17
$expose_functions(), 14, 16, 17, 24, 64
$format(), 16
$generate_quantities(), 10, 17
$grad_log_prob(), 14, 16, 24
$gradients(), 9
$hessian(), 14, 16, 24

123

$hpp_file(), 17
$init(), 9,12, 13, 15, 20, 24
$init_model_methods(), 14, 16, 24
$inv_metric(), I3
$laplace(), 12, 82
$log_prob(), 14, 16, 24
$1loo(), 14
$1p(), 9,12, 13,15, 20, 23,45
$1p_approx(), 12, 20, 24
$metadata(), 9, 10, 12, 13, 15, 20, 24
$mle(), 15, 35
$num_chains(), 13
$optimize(), 15, 17,78
$output(), 11, 13-15, 21, 24, 78, 83, 90, 97,
98, 106, 111
$pathfinder(), 17, 20
$print(), 14, 23
$return_codes(), 11, 13-15, 21,24
$sample(), 13, 17,31, 101
$sample_mpi(), 17
$sampler_diagnostics(), 13, 33, 34, 98,
106
$save_data_file(), 9, 10, 12, 14, 15, 20, 24
$save_hpp_file(), 17
$save_latent_dynamics_files(), 13, 14,
20, 24, 82, 88, 95, 104, 110
$save_object(), 10, 12, 14, 15, 20, 24
$save_output_files(), 9, 10, 12, 14, 15, 20,
24,67,73,77,82,88, 96, 104, 110
$summary (), 10, 12, 14, 15, 20, 24, 31, 33, 98,
106
$time(), 11, 13-15,21,24,78,116
$unconstrain_draws(), 14, 16, 24
$unconstrain_variables(), 14, 16, 24
$variable_skeleton(), 14, 16, 24
$variational(), 17, 23, 31

as.CmdStanDiagnose (cmdstan_coercion),
25
as.CmdStanGQ (cmdstan_coercion), 25

124

as.CmdStanLaplace (cmdstan_coercion), 25
as.CmdStanMCMC (cmdstan_coercion), 25
as.CmdStanMLE (cmdstan_coercion), 25
as.CmdStanPathfinder
(cmdstan_coercion), 25
as.CmdStanVB (cmdstan_coercion), 25
as_cmdstan_fit (read_cmdstan_csv), 114
as_draws (as_draws.CmdStanMCMC), 7
as_draws.CmdStanMCMC, 7
as_mcmc.list, 8

base: :saveRDS(), 51

check_cmdstan_toolchain
(install_cmdstan), 59
check_syntax
(model-method-check_syntax), 61
cmdstan_coercion, 25
cmdstan_diagnose
(fit-method-cmdstan_summary),
31
cmdstan_make_local (install_cmdstan), 59
cmdstan_model, 25
cmdstan_model (), 4, 16, 63
cmdstan_path (set_cmdstan_path), 118
cmdstan_summary
(fit-method-cmdstan_summary),
31
cmdstan_version (set_cmdstan_path), 118
CmdStanDiagnose, 9, 11, 13, 14, 16, 17, 21,
25,37,68
CmdStanGQ, 9, 10, 13, 14, 16, 17, 21, 25, 32,
36, 45,4749, 51, 53, 54, 56, 74
CmdStanLaplace, 9, 11, 12, 14, 16, 21, 25, 44,
54,67,77, 78,81, 88, 95, 103, 104,
110,115
CmdStanMCMC, 8, 9, 11, 13,13, 16, 17, 21, 25,
31, 32, 34-36, 39,41, 44-51, 53, 54,
56,67, 68,72,77,81, 88, 95, 98,
103,106, 110, 115
CmdStanMLE, 9, 11-14,15, 17,21, 25, 32, 36,
39,44, 45,4749, 51, 53, 54, 56, 67,
77,78, 81, 83,88, 95,103, 110, 115
CmdStanModel, 9, 10, 12, 13, 15, 16, 20, 23,
25, 26,61, 63, 64, 66, 68, 70,72, 75,
79, 86, 93, 101, 107, 108
CmdStanPathfinder, 9, 11, 13, 14, 16, 17, 20,
25,67,77,81, 88, 90, 95, 103, 104,
110

INDEX

CmdStanR (cmdstanr-package), 3

cmdstanr (cmdstanr-package), 3

cmdstanr-package, 3

cmdstanr_example, 21

cmdstanr_global_options, 4, 22

CmdStanVB, 9, 11, 13, 14, 16, 17, 21, 23, 32,
36, 39, 44, 45,4749, 51, 53, 54, 56,
67,68,72,77,81,88, 95, 103, 104,
110,112,115

code (fit-method-code), 32

compile, 23, 101

compile (model-method-compile), 63

compiled, 73,78, 82, 89, 96, 111

config_files
(fit-method-save_output_files),
52

constrain_variables
(fit-method-constrain_variables),
32

constrain_variables(), 33, 38, 40, 42, 57,
58

data.matrix(), 121

data_file
(fit-method-save_output_files),
52

diagnose (model-method-diagnose), 65

diagnostic_summary
(fit-method-diagnostic_summary),
33

draws, 23, 50, 115

draws (fit-method-draws), 34

draws(), 15

draws_array, 10, 13, 35, 50, 116

draws_matrix, /2, 15, 20, 23, 35, 116

draws_to_csv, 29

draws_to_csv(), 72

eng_cmdstan, 30

eng_cmdstan(), 117

environment variable, //9

expose_functions
(model-method-expose_functions),
68

fit-method-cmdstan_diagnose
(fit-method-cmdstan_summary),
31

fit-method-cmdstan_summary, 31

INDEX

fit-method-code, 32
fit-method-constrain_variables, 32
fit-method-data_file
(fit-method-save_output_files),
52
fit-method-diagnostic_summary, 33
fit-method-draws, 34
fit-method-expose_functions
(model-method-expose_functions),
68
fit-method-grad_log_prob, 37
fit-method-gradients, 36
fit-method-hessian, 38
fit-method-init, 39
fit-method-init_model_methods, 40, 42
fit-method-inv_metric, 40
fit-method-latent_dynamics_files
(fit-method-save_output_files),
52
fit-method-log_prob, 41
fit-method-1oo, 42
fit-method-1p, 43
fit-method-metadata, 44
fit-method-mle, 45
fit-method-num_chains, 46
fit-method-output, 47
fit-method-output_files
(fit-method-save_output_files),
52
fit-method-print (fit-method-summary),
54
fit-method-profile_files
(fit-method-save_output_files),
52
fit-method-profiles, 48
fit-method-return_codes, 49
fit-method-sampler_diagnostics, 50
fit-method-save_config_files
(fit-method-save_output_files),
52
fit-method-save_data_file
(fit-method-save_output_files),
52
fit-method-save_latent_dynamics_files
(fit-method-save_output_files),
52
fit-method-save_metric_files
(fit-method-save_output_files),

125

52
fit-method-save_object, 51
fit-method-save_output_files, 52
fit-method-save_profile_files

(fit-method-save_output_files),

52
fit-method-summary, 317, 54
fit-method-time, 55
fit-method-unconstrain_draws, 56
fit-method-unconstrain_variables, 57
fit-method-variable_skeleton, 58
format (model-method-format), 70

garbage collected, 67, 73,77, 82, 89, 96,
104,110

generate_quantities
(model-method-generate-quantities),
72

generated quantities, 35

grad_log_prob
(fit-method-grad_log_prob), 37

grad_log_prob(), 33, 38, 40, 42, 57, 58

gradients (fit-method-gradients), 36

hash, 119

hashing, 120

hessian (fit-method-hessian), 38
hessian(), 33, 38, 40, 42, 57, 58

init (fit-method-init), 39

init_model_methods
(fit-method-init_model_methods),
40

install_cmdstan, 59

install_cmdstan(), 4, 26, 118, 119

inv_metric (fit-method-inv_metric), 40

laplace, 116

laplace (model-method-laplace), 75

latent_dynamics_files
(fit-method-save_output_files),
52

log_prob (fit-method-log_prob), 41

log_prob(), 33, 38, 40, 42, 57, 58

loo (fit-method-100), 42

loo::loo.array(), 14,42, 43

loo: :loo_moment_match(), 42

loo: :loo_moment_match.default(), 42, 43

loo::relative_eff.array(), 42

126

1p (fit-method-1p), 43
lp_approx (fit-method-1p), 43

MCMC, 35
metadata (fit-method-metadata), 44
metric_files
(fit-method-save_output_files),
52
mle (fit-method-mle), 45
model-method-check_syntax, 61
model-method-compile, 63
model-method-diagnose, 65
model-method-expose_functions, 68
model-method-format, 70
model-method-generate-quantities, 72
model-method-laplace, 75
model-method-optimize, 79
model-method-pathfinder, 86
model-method-sample, 93
model-method-sample_mpi, 101
model-method-variables, 107
model-method-variational, 108
moment-matching, 42

num_chains (fit-method-num_chains), 46

optimization, 35, 116

optimize (model-method-optimize), 79

options, 4

options(), 22

output (fit-method-output), 47

output_files
(fit-method-save_output_files),
52

pathfinder (model-method-pathfinder), 86

posterior::draws_array, 72

posterior::draws_matrix, 72

posterior: :subset_draws(), 8

posterior::summarise_draws(), 10, 12, 14,
15, 20, 24, 54

posterior::summarize_draws(), 33

print.CmdStanMCMC (fit-method-summary),
54

print.CmdStanMLE (fit-method-summary),
54

print.CmdStanVB (fit-method-summary), 54

print_example_program
(cmdstanr_example), 21

INDEX

profile_files
(fit-method-save_output_files),
52

profiles (fit-method-profiles), 48

R6, 13, 16
read_cmdstan_csv, 114
read_cmdstan_csv(), 44, 98, 106
rebuild_cmdstan (install_cmdstan), 59
register_knitr_engine, 117
register_knitr_engine(), 30
return_codes (fit-method-return_codes),
49

sample (model-method-sample), 93

sample_mpi (model-method-sample_mpi),
101

sampler_diagnostics
(fit-method-sampler_diagnostics),
50

sampling, 116

save_config_files
(fit-method-save_output_files),
52

save_data_file
(fit-method-save_output_files),
52

save_latent_dynamics_files
(fit-method-save_output_files),
52

save_metric_files
(fit-method-save_output_files),
52

save_object (fit-method-save_object), 51

save_output_files
(fit-method-save_output_files),
52

save_profile_files
(fit-method-save_output_files),
52

save_profile_files(), 48

set_cmdstan_path, 118

standalone generated quantities, /16

summarise_draws(), 54

summary (fit-method-summary), 54

temporary, 119
temporary directory, 29, 120
time (fit-method-time), 55

INDEX

unconstrain_draws

(fit-method-unconstrain_draws),

56
unconstrain_draws(), 33, 38, 40, 42, 57, 58
unconstrain_variables

(fit-method-unconstrain_variables),

57
unconstrain_variables(), 33, 38, 40, 42,
57,58

utils::capture.output(), 22

variable_skeleton
(fit-method-variable_skeleton),
58

variable_skeleton(), 33, 38, 40, 42, 57, 58

variables (model-method-variables), 107

variational (model-method-variational),
108

variational inference, 35,116

write_stan_file, 119

write_stan_file(), 23, 26

write_stan_json, 121

write_stan_json(), 66, 73, 76, 80, 81, 87,
94, 95, 102, 103, 109

127

	cmdstanr-package
	as_draws.CmdStanMCMC
	as_mcmc.list
	CmdStanDiagnose
	CmdStanGQ
	CmdStanLaplace
	CmdStanMCMC
	CmdStanMLE
	CmdStanModel
	CmdStanPathfinder
	cmdstanr_example
	cmdstanr_global_options
	CmdStanVB
	cmdstan_coercion
	cmdstan_model
	draws_to_csv
	eng_cmdstan
	fit-method-cmdstan_summary
	fit-method-code
	fit-method-constrain_variables
	fit-method-diagnostic_summary
	fit-method-draws
	fit-method-gradients
	fit-method-grad_log_prob
	fit-method-hessian
	fit-method-init
	fit-method-init_model_methods
	fit-method-inv_metric
	fit-method-log_prob
	fit-method-loo
	fit-method-lp
	fit-method-metadata
	fit-method-mle
	fit-method-num_chains
	fit-method-output
	fit-method-profiles
	fit-method-return_codes
	fit-method-sampler_diagnostics
	fit-method-save_object
	fit-method-save_output_files
	fit-method-summary
	fit-method-time
	fit-method-unconstrain_draws
	fit-method-unconstrain_variables
	fit-method-variable_skeleton
	install_cmdstan
	model-method-check_syntax
	model-method-compile
	model-method-diagnose
	model-method-expose_functions
	model-method-format
	model-method-generate-quantities
	model-method-laplace
	model-method-optimize
	model-method-pathfinder
	model-method-sample
	model-method-sample_mpi
	model-method-variables
	model-method-variational
	read_cmdstan_csv
	register_knitr_engine
	set_cmdstan_path
	write_stan_file
	write_stan_json
	Index

